Failure of Silicon: Crack Formation and Propagation

Robert O. Ritchie

Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering
University of California, Berkeley, CA 94720
tel: (510) 486-5798, fax: (510) 486-4881, email: roritchie@lbl.gov

with thanks to

C. L. Muhlstein (Penn State) and E. A. Stach (NCEM, LBNL)

Work supported by the U.S. Department of Energy (Basic Energy Sciences), NEDO and Exponent, Inc.
MEMS, Microsystems and Micromachines

- Microturbine
- Micron-scale moveable mirrors
- Series of gears
- Microhinge

R. Conant, 1999

MCNC/Cronos
Outline

- Mechanical properties of silicon
- Brittle fracture of silicon
- Strength vs. fracture toughness
- Delayed failure of thin-film silicon
- Role of the native oxide layer
- Suppression/prediction of fracture
• crystal structure
 - diamond cubic structure (face-centered cubic)

• brittle-to-ductile transition (DBTT at ~500°C)
 - below the DBTT (or at high strain rates), Si is completely brittle
 - dislocations not mobile, Si fractures by cleavage on {111} planes
 - fracture strengths ~ 1 to 20 GPa in single-crystal silicon
 - fracture strengths ~ 3 to 5 GPa in polycrystalline silicon
 - above the DBTT, silicon becomes gradually ductile
 - glide motion of \((a/2)<110>\) dislocations on \(\{111\}\) planes
 - dissociation into \((a/6)<112>\) Shockley partials with 4-6 nm stacking faults
 - heterogeneous dislocation nucleation in “dislocation-free” crystals
e.g., at surfaces or due to deformation-induced amorphous Si
 - solid-solution hardening by impurity solutes, e.g., oxygen, nitrogen

a = 0.534 nm
Mobile Dislocations in Silicon at 25°C

- Indent went to a peak depth of 216 nm
- No phase transformations
- Large plastic extrusions of the diamond cubic phase
- Dislocation nucleation easier than phase transformation

Wall & Dahmen, 1997
Modes of Failure in Silicon

- Brittle (catastrophic) fracture
 - catastrophic transgranular cleavage fracture on \{111\} planes
 - evidence for \{110\} cleavage for “low energy/velocity” fractures

- Sustained-load cracking (delayed fracture)
 - no evidence for delayed fracture from subcritical crack growth, e.g.,
 due to stress-corrosion cracking, in bulk silicon below the DBTT
 (<500°C)
 - evidence for moisture-induced cracking in thin film silicon

- Cyclic fatigue failure (delayed fracture)
 - no evidence for delayed fracture from fatigue cracking under
 alternating loads in bulk silicon below the DBTT
 - strong evidence of premature fatigue failure of thin film silicon
What affects resistance to brittle fracture in silicon?

- **Intrinsic factors**
 - bond rupture
 - plasticity, i.e., mobile dislocations
 - defect (crack) population

- **Toughening mechanisms**
 - intrinsic mechanisms (ahead of crack tip)
 - microstructure, e.g., second phases
 - extrinsic (crack-tip shielding) mechanisms (behind crack tip)
 - crack bridging (intergranular cracking)
 - microcrack toughening (from dilation and reduced stiffness)
 - residual stresses (compressive for toughening)
Brittle Fracture of Silicon

{111} cleavage

transgranular cleavage fracture

{110} cleavage

inner surface of notch

mirror

fracture surface

0.5 μm

Muhlstein, Brown, Ritchie, Sensors & Actuators, 2001

Ballarini et al., ASTM STP 1413, 2001
Brittle Fracture of Silicon

- **elastic modulus**
 - $E \sim 160$ GPa

- **high fracture strengths**
 - 1 to 20 GPa in single-crystal silicon
 - 3 to 5 GPa in polycrystalline silicon
 - dependent on defect size, loading mode, specimen size, orientation, test method
 - probability of fracture dependent on “weakest-link” (Weibull) statistics

- **low fracture toughness**
 - $K_c \sim 1$ MPa√m in polysilicon thin films
 - $K_c \sim 0.7$-1.3 MPa√m in single-crystal films
 - dependent on specimen type, orientation and investigator
 - independent of microstructure

Sharpe et al., ASTM STP 1413, 2001

Johnson et al., ASTM STP 1413, 2001
• Brittle fracture of silicon governed solely by the rupture of Si-Si bonds at the crack tip
 - K_c is independent of microstructure

• Except variations due to orientation (in single-crystal Si) and experimental error, fracture strength depends on the defect population

• The probability of failure, P_F, can thus best be described in terms of "weakest-link" statistics

$$P_F(\sigma) = 1 - \exp \left[-\int_0^V dV \left(\frac{\sigma - \sigma_u}{\sigma_o} \right)^m N \right]$$

 - where σ_u is the lower bound fracture strength, σ_o is the "scale parameter", m is the Weibull modulus, and V is the volume of the sample

LaVan et al., ASTM STP 1413, 2001
Strength vs. Fracture Toughness

- fracture strength/strain subject to extreme variability – not a material property
- more fundamental parameter is the fracture toughness - \(K_c \) or \(G_c \)
 - where \(K_c \) is the critical value of the stress intensity \(K \) to cause fracture
 \[
 K_c = Q \sigma_F (\pi a_c)^{\frac{1}{2}}
 \]
 \(\sigma_F \) is the fracture strength
 \(a_c \) is the critical crack size
 \(Q \) is a geometry factor (~unity)
 - and \(G_c \) is the strain energy release rate
 \[
 G_c = (K_c)^2/E
 \]
 \(E \) is Young’s modulus
- \(K_c = 1 \text{ MPa}\sqrt{\text{m}} \) in Si and is independent of microstructure and dopant
Measurement of Fracture Toughness

\[K_c = Q \sigma_F (\pi a_c)^{1/2} \]

- Measurement of the fracture toughness of thin-film silicon using MEMS

Ballerini et al., ASTM STP 1413, 2001
Fracture Mechanics Approach

- low fracture toughness K_c in silicon
 - 0.7 to 1.3 MPa√m in single-crystal Si
 - 1 MPa√m in polysilicon thin films
- compare with K_c values of:
 - ~0.6 MPa√m in (soda-lime) glass
 - 2 to 3 MPa√m in human teeth (dentin)
 - 3 to 8 MPa√m in alumina ceramics
 - 20 to 200 MPa√m in steels
- from this microstructure-independent K_c value in Si, can:
 - determine the fracture strength, σ_F, as a function of the largest defect size, a_c
 \[K_c = Q \sigma_F (\pi a_c)^{1/2} \]

• **Probability of brittle fracture depends on defect (crack) population**
 - use fracture strength approach with weakest-link statistics to determine probability of fracture
 - characterize defect population at sub-micron resolution (actually tens of nanometers)
 - X-ray tomography (e.g., Xradia, Concord, CA)
 - GHz acoustic microscopy

\[
K_c \sim Q \sigma_F (\pi a_c)^{1/2} \sim 1 \text{ MPa}\sqrt{\text{m}}
\]
Modes of Failure in Silicon

- Brittle (catastrophic) fracture
 - catastrophic transgranular cleavage fracture on \{111\} planes
 - evidence for \{110\} cleavage for “low energy/velocity” fractures

- Sustained-load cracking (delayed fracture)
 - no evidence for delayed fracture from subcritical crack growth, e.g., due to stress-corrosion cracking, in bulk silicon below the DBTT (<500°C)
 - evidence for moisture-induced cracking in thin film silicon

- Cyclic fatigue failure (delayed fracture)
 - no evidence for delayed fracture from fatigue cracking under alternating loads in bulk silicon below the DBTT
 - strong evidence of premature fatigue failure of thin film silicon
• micron-scale silicon films display some evidence of time-delayed failure under sustained (non-cyclic) loading

• lives for thin-film silicon are somewhat shorter in water

• no evidence of such time-delayed failure in bulk silicon
• Brittle (catastrophic) fracture
 - catastrophic transgranular cleavage fracture on \{111\} planes
 - evidence for \{110\} cleavage for “low energy/velocity” fractures

• Sustained-load cracking (delayed fracture)
 - no evidence for delayed fracture from subcritical crack growth, e.g.,
 due to stress-corrosion cracking, in bulk silicon below the DBTT
 (<500°C)
 - evidence for moisture-induced cracking in thin film silicon

• Cyclic fatigue failure (delayed fracture)
 - no evidence for delayed fracture from fatigue cracking under
 alternating loads in bulk silicon below the DBTT
 - strong evidence of premature fatigue failure of thin film silicon
• **composition**

 MUMPs process - LPCVD reactor*
 n-type – P doped
 deposited Si and PSG layers
 thermally annealed at ~900°C

• **microstructure**

 nominal grain size ~100 nm
 low residual stresses ~ -9 MPa

• **mechanical properties**

 $E \sim 163$ GPa, $\nu \sim 0.22$
 bending strength, $\sigma_F \sim 3 - 5$ GPa
 fracture toughness $K_c \sim 1$ MPa\sqrt{m}

 *MCNC/JDS Uniphase/Cronos/MEMSCAP

 Contaminants

 1×10^{19} atoms cm$^{-3}$ P
 2×10^{18} atoms/cm$^{-3}$ H
 1×10^{18} atoms/cm$^{-3}$ O
 6×10^{17} atoms/cm$^{-3}$ C
defects in the polysilicon films

- stacking faults
- Lomer-Cottrell locks
- microtwins

1 MeV HVTEM images

Electrostatically-Actuated Resonant Fatigue Testing

- Notched cantilever beam attached to ~300 μm square perforated plate (resonant mass)
- "Comb drives" on one side are electrostatically forced to resonate at ~ 40 kHz, with $R = -1$
- Other side provides for capacitive sensing of motion, calibrated with machine vision system (Freeman, MIT)
- Stress amplitudes determined by finite-element analysis (ANSYS)
- Smallest notch root radius (1 – 1.5 μm) achieved by photolithographic masking

Brown, Van Arsdell, Muhlstein et al.
Micron-scale \(p \)-type (110) single crystal Si films can fail after \(10^9 \) cycles at (maximum principal) stresses (on 110 plane) of one half the (single cycle) fracture strength.

{110} crack paths suggest mechanisms other than {111} cleavage.

\[
\begin{align*}
\text{Stress Amplitude (GPa)} & \\
\text{Fatigue Life (Cycles)} &
\end{align*}
\]

Micron-scale polycrystalline n-type Si is susceptible to fatigue failure.

Films can fail after 10^9 cycles at stresses of one half the (single cycle) fracture strength.

Fatigue Life, N_f (Cycles)

- Slivers and debris on fractures consistent with some degree of microcracking.

Muhlstein, Brown, Ritchie, Sensors & Actuators, 2001
Fatigue of Single Crystal and Polycrystalline Silicon Thin Films

- Micron-scale silicon films display delayed failure under high-cycle fatigue loading
- No such delayed fatigue failure is seen in bulk silicon
Transgranular Cleavage Fracture

- transgranular cleavage cracking from notch under sustained loads
- some evidence of secondary cracking and multiple microcracking

Traditional Fatigue Mechanisms

Bulk ductile materials

Extrinsic Processes

- Metals
 - asperity, oxide wedge
 - striations
 - Crack Advance: K_{\max} Controlled
 - Levels of Closure: K_{\max} Controlled

Intrinsic Processes

- Crack Advance: ΔK Controlled

Ceramics

- Bridging grains
- crack advance by static modes
- Bridging Degradation: ΔK Controlled

Bulk brittle materials

- Crack Advance: K_{\max} Controlled
- ΔK Controlled

Graphs:

1. 2024-T4 Smooth Bar Rotating Beam Fatigue
 Templin, et al. (1950)

2. Al_2O_3, Tension-tension fatigue
 Lathabai, et al. (1990)
Proposed Mechanisms of Silicon Fatigue

- Dislocation activity in thin films
- Stress-induced phase transformations (e.g., amorphous Si)
- Impurity effects (e.g., precipitates)
- Suppression of crack-tip shielding
- Surface effects (native oxide layer)
Notch Root Oxide Thickening

- native oxide thickness ~30 nm
- *in fatigue*, oxide thickness at notch root seen to thicken three-fold to ~100 nm
- *in sustained loading*, no such thickening is seen

\[\sigma_a = 2.26 \text{ GPa}, \quad N_f = 3.56 \times 10^9 \text{ cycles} \]

Thermal vs. Mechanical Oxide Thickening

- temperature measured in situ at various stresses using a high-resolution IR camera
- IR camera capable of detecting ΔT to within mK with lateral positioning within microns
- small changes in ΔT of the resonant mass due to friction with the air
- notch region shows no change (<1 K) in ΔT during the fatigue test
- the observed 3-fold thickening of the oxide film in the notch region is promoted by mechanical rather than thermal factors

Crack Initiation in Notch Root Oxide

- Crack initiation in oxide scale during interrupted fatigue test
- Evidence of several cracks ~40 – 50 nm in length
- Length of cracks consistent with change in resonant frequency
- Strongly suggests subcritical cracking in the oxide layer, consistent with proposed model for fatigue

Interrupted after 3.56×10^9 cycles at $\sigma_a = 2.51$ GPa

Progressive time/cycle dependent fatigue mechanism could involve an alternating process of oxide formation and oxide cracking. However, the fracture toughnesses of Si and SiO₂ are comparable:

- Si: \(K_c \sim 1 \text{ MPa}\sqrt{m} \)
- SiO₂: \(K_c \sim 0.8 - 1 \text{ MPa}\sqrt{m} \)

In contrast, the susceptibility of Si and SiO₂ to environmentally-assisted cracking in the presence of moisture are quite different, with silica glass being much more prone to stress-corrosion cracking:

- Si: \(K_{isc} \sim 1 \text{ MPa}\sqrt{m} \) (in moisture)
- SiO₂: \(K_{isc} \sim 0.25 \text{ MPa}\sqrt{m} \)

Thus, fatigue mechanism is postulated as a sequential process of:

- mechanically-induced surface oxide thickening
- environmentally-assisted oxide cracking
- final brittle fracture of silicon
Silicon Fatigue Mechanism - Reaction-Layer Fatigue -

(a) Notch Root

(b) Reaction-Layer Thickening

(c) Reaction-Layer Crack Initiation

(d) Subcritical Crack Growth

(e) Unstable Crack Growth

• measured change in natural frequency used to compute specimen compliance and hence crack length throughout the test

• for $\sigma_a = 2 - 5$ GPa, crack lengths at onset of specimen failure remain less than ~ 50 nm

$K_c = Q \sigma_F (\pi a_c)^{1/2}$

- this suggests that the entire fatigue process, i.e.,
 - crack initiation
 - subcritical crack growth
 - onset of final failure

occurs within the native oxide layer

Why is Only Thin-Film Silicon Susceptible to Reaction-Layer Fatigue?

- mechanism is active for thin-film and bulk silicon in moist air
- due to low surface-to-volume ratio of bulk materials, the effect is insignificant
- critical crack size for failure can be reached in the oxide layer only for thin-film silicon, i.e., where \(a_c < h \)

Muhlstein, Ritchie, 2002
Interfacial Crack Solutions: Crack Inside Layer, Normal to Interface

• Beuth (1992)
 – extension of Civilek (1985) and Suo and Hutchinson (1989, 1990)
 – dislocation-based fracture mechanics solution
• Ye, Suo, and Evans (1992)

\[\alpha = \frac{E_1 - E_2}{E_1 + E_2} \]

\[\beta = \frac{\mu_1(1-2\nu_2) - \mu_2(1-2\nu_1)}{2\mu_1(1-\nu_2) + 2\mu_2(1-\nu_1)} \]

\[\text{SiO}_2/\text{Si} \]
\[\alpha = -0.5 \]
\[\beta = -0.2 \]
Crack-Growth Rates and Final Failure

- estimated cracking rates display decreasing growth-rate behavior, consistent with:
 - small-crack effects
 - displacement-control conditions
 - residual stresses in film
 - growth toward SiO₂/Si interface

Muhlstein, Stach, Ritchie, Acta Mat., 2002
Solution for Crack in Native Oxide of Si

- Interfacial solutions for a compliant (cracked) SiO$_2$ layer on a stiff silicon substrate
- Crack-driving force K_{I} is $f(a,h)$
- Maximum K is found at $a_c/h \sim 0.8$

$K_{I,0}$ is the interfacial K where $a/h = 0.05$; $h = 100$ nm

Muhlstein and Ritchie, *Int. J. Fract.*, 2003
Interfacial Crack-Driving Force

- Maximum K at $(a/h) \sim 0.8$

- In range of fatigue failure, where $\sigma_{\text{app}} \sim 2$ to 5 GPa, cyclic-induced oxidation required for reaction-layer fatigue

- Oxide thickness ≥ 46 nm for failure at $\sigma_{\text{app}} < 5$ GPa

- Oxide thickness ≥ 2.9 nm for crack initiation at $\sigma_{\text{app}} < 5$ GPa

Muhlstein and Ritchie, *Int. J. Fract.*, 2003
Bounds for Reaction-Layer Fatigue

- behavior dependent on reaction-layer thickness
- bounds set by K_{iscc} and K_c of the oxide
- regimes consist of:
 - no crack initiation in oxide ($K < K_{\text{iscc}}$)
 - cracking in oxide but no failure ($K_{\text{iscc}} < K < K_c$)
 - reaction-layer fatigue ($K > K_c$)

Reaction-layer fatigue provides a mechanism for delayed failure in thin films of materials that are ostensibly immune to stress corrosion and fatigue in their bulk form
Alkene-Based Self-Assembled Monolayer Coatings

- fatigue testing in the absence of oxide formation achieved through the application of alkene-based monolayer coatings

- Si chip is dipped in HF and then coated with alkene-based monolayer coating – 1-octadecene
- alkene-based coating bonds directly to the H-terminated silicon surface
- coating is a few nm thick, hydrophobic, and stable up to 400°C; providing a surface barrier to moisture and oxygen

Muhlstein, Ashurst, Maboudian, Ritchie, 2001
Suppression of Reaction-Layer Fatigue

- SAM-coated Si samples display far reduced susceptibility to cyclic fatigue
- Absence of oxide formation acts to prevent premature fatigue in Si-films

- Alkene-based SAM coatings, however, do lower the fracture strength
- Oxidation during release smooths out surface; with coatings, sharp surface features remain

• Below a ductile-brittle transition temperature of ~500°C, Si displays a high fracture strength (1 - 20 GPa in mono- and 3 - 5 GPa in poly-crystalline Si)

• However, Si is intrinsically brittle with a fracture toughness of ~1 MPa \sqrt{m} (approximately twice that of window pane glass!). This value is independent of microstructure and dopant type

• Evaluation of probability of fracture can be made using weakest-link statistics and/or nanoscale crack detection

• Thin film (micron-scale) Si is susceptible to delayed fracture under sustained and particularly high-cycle fatigue loading - prematurely failure can occur in room air at ~50% of the fracture strength

• Mechanism of cyclic fatigue is associated with mechanically-induced thickening and moisture-induced cracking of the native oxide (SiO$_2$) layer

• Mechanism significant in thin-film (and not bulk) Si as the critical crack sizes for device failure are less than native oxide thickness, i.e., $a_c < h_{\text{oxide}}$

• Suppression of oxide formation at the notch root, using alkene-based SAM coatings, markedly reduces the susceptibility of thin-film silicon to fatigue.
Brittle Fracture
- Si-Si bond rupture
- defect (crack) population
- residual stresses

Probability of fracture depends on defect (crack) population
- smooth surfaces, round-off edges, etch out cracks
- use weakest-link statistics
- detect microcracks on the scale of tens of nanometers

Delayed Fracture
- cracking in native oxide layer (thin film silicon)

Bottom line:

What affects fracture in silicon?

- **Fracture strength**, σ_F (GPa)
- **Critical crack size**, a_c (nm)
- **Probability of fracture**, P_f

\[K_c \sim Q \sigma_F (\pi a_c)^{1/2} \approx 1 \text{ MPa} \sqrt{\text{m}} \]

- safe fractures
- weakest-link statistics