\[\text{diffusion} \to \text{evaporation} \to \text{water} \]

- Aluminum:
 - Rod
- Hot vapor
- Water
- Eupenizers:
 - Spots
- Spots
- Spots
- Spots

- Aluminium chips
- Transmission
- Aluminium chips
- Aluminium chips
- Aluminium chips
- Aluminium chips

- U-float
- Flow grid
- B-569
- O

- E-Zoor for high-level reactor (U.S. DOE)
and 1,000, can probably work.

$Q = \frac{\text{# molecules/sec}}{V}$

$P = \text{sucrose density of solution}$

$\text{mol/cm}^3 = \frac{\text{g/mol}}{M}$

$Q \text{ flux} = \phi = \text{molecules/sec}$

Susan: dry drop

How fast does A or H_2O diffuse?

association on surface = Heaters

O_2 is primary culprit

mmol per day > 1000 mg per day

for good film, need the right of 50 min 1 Torr (best reported)

$= 68 \text{ mm} 1 \text{ Torr}$
for these, use lteffe (Ar)
remove tooth to gel in glass (Cu)

for these, use lteffe (Ar)
Some make not flush to etch (Ag)

Dramatic

polish

each desired etch

deposit direction

dramatic

each desired

deposit direction

dramatic

Tail caper

pr

even

spin, expose, develop pr

strain PR + sonicate (ultrasonic bath)

sidewall striations