No class, M, no lab.
W - review.
F - midterm in class. I page 2 sided notes. No calculation, books.
Reading: sections + equations, figures.
Active load: \(g_m = X g_m \), \(X = \frac{C_{dua}}{C_{ox}} = n - 1 \).
Typically \(V_b = 0 \), \(V_b = 0 \).
Current is roughly constant (compared to resistance?)
\(g_m, r_o \) roughly constant.
Bias the pair \((V_i, V_b)\) so \(V_o \) mid-rail.
\(I_{dm} = -\frac{M_{max}}{2} (V_{om})^2 (1 + \alpha V_b) \)
\(|I_{dp}| = \frac{C_m}{2} (V_{om})^2 (1 + 2(V_{om} - V_b)) \)
\(\alpha = \frac{2A_D}{2V_{ov}} \).
Can set equal by design.
Mid-rail, \(\lambda_n = \lambda_p \).
Output swing: \((V_{ov} - V_D) \).
\(C_m = g_{mn} = \frac{2I_D}{V_{ov}} \).
\(R_0 = \frac{r_{o11}(x_p + 1)}{2A_D} \).
\(N = \frac{1}{2A_D} \) if \(\lambda_n = \lambda_p \).
\(A_v = -6mR_0 = \frac{1}{2V_{ov}} \).
\(V_{ov} = 0.1V \).
\(a = \frac{1}{10V} \).
\(A_v < 100 \).