Problem 1

Amp A: pretend R_2 is two $2R_2$ resistors in parallel.

$$G_m = \frac{g_m}{1 + g_m Z R_2} = \frac{1}{2 R_2} \quad R_0 = R_1,$$

so

$$A_{vdm} = -\frac{g_m Z R_1}{2}.$$

Amp B: Now instead of $R_{hi} = R_2$, it's R_{o3}

$$G_m = \frac{g_m}{1 + g_m Z R_{o3}} = \frac{1}{2 R_{o3}}$$

And we have a more complete expression for V_{out}:

$$V_{out} = V_{up} || V_{down} = \frac{V_{o3}}{2} \left(\frac{s}{s + \frac{1}{\tau_{o3}}} + \frac{g_{m3} Z R_{o3}}{g_{m3} Z R_{o3} + g_{m3} Z R_{o3} + g_{m3} Z R_{o3}}\right)$$

$$= \frac{V_{o3}}{2} \frac{1}{R_{o3}} = \frac{2}{8} V_{o3}.$$

Assuming all g_m and R_0 values are equal...

$$A_{vcm} = -G_m R_0 = \frac{1}{2 R_{o3}} = \frac{2}{3} R_0 = \frac{1}{3}.$$

In differential mode, $G_m = \frac{g_m}{2}$ again and $R_0 = \frac{2}{3} R_0$

so

$$A_{vdm} = -\frac{1}{3} g_m R_0.$$
Amp C: \[\text{Aucm} = \infty \] : ideal current source.

Now, MI\$'s degeneration impedance isn't just \(g_m \).

It will be \(Z = \frac{R_o + R_2}{g_m R_o} = \frac{2}{g_m} \).

So, \(G_m = \frac{g_m}{1 + g_m R_o} = \frac{g_m}{g_m + \frac{1}{2}} \).

And \(R_{out} = R_o \left(\frac{1}{R_m^2 + \frac{g_m^2}{2}} \right) \).

\[R_{out} = \frac{R_o}{3 R_o} = \frac{2}{3} \]

\[\text{Aucm} = -G_m R_o = \frac{g_m}{3} \cdot \frac{2}{3} R_o = \frac{2}{9} \frac{g_m}{R_o} \]

Amp D: It is common mode, the current mirror will enforce equal current in each side but that was true already. We can write directly: \(G_m = \frac{1}{R_o} \).

Output resistance we know from \(H_2 \) a \(R_2 \) already: \(\frac{R_o}{2} \).

So \(\text{Aucm} = -\frac{1}{R_o} \cdot \frac{R_o}{2} = -\frac{1}{2} \).

In differential mode, \(G_m = g_m \) thanks to the mirror. \(R_2 \) is the same. So, \(\text{Aucm} = -g_m R_2 \).
Problem 2: first part:

V_0_1 will result in a V_0_2 according to A_{V_2}.
V_0_2 will result in a current through C_c, $V_2 - sC_c$.
This current will be mirrored into i_c in I_1.

$$i_c = V_0_1 \cdot A_{V_2} \cdot sC_c = -V_0_1 \cdot g_m \cdot R_{o_2} \cdot sC_c$$

Second part: Adding another current mirror stage flips the current direction with respect to i_c, so the new current is:

$$i_c = +V_0_1 \cdot g_m \cdot R_{o_2} \cdot sC_c.$$

V_0_1 experiences current draw proportional to A_{V_2} and sC_c
so it will still see a load that splits poles.

The RHP zero is eliminated.
Problem 3

The zero in the transfer function comes from the current through the compensation cap at some frequency, equaling, and canceling, the current generated by the second stage's gain.

In Fig. 9.21, the forward current remains to load the first stage like \((1-A_{02})C_c \) but that current is kept from \(V_{O2} \) and thus doesn't interfere with \(g_{m2} \).

In Fig. 9.22, the first stage still receives \(C_c \) current through \(M11 \) but the block is on the 1st stage side; \(C_c \) current can flow back to \(V_1 \), but current from \(V_1 \) sees high-importance nodes so feed-forward again won't reach \(V_{O2} \).

In Fig. 9.23, feed-forward current again sees high-\(Z \) while \(C_c \) current can be easily added to \(V_{O1} \)'s path via the cascode node instead of at the 1st stage output.
Problem 4

If \(g m_3 = g m_7 = g m \) and \(C_e = 10 C_L \),
to get 90° phase margin, we want the amplifier's second pole to be at least 1 decade away from \(\omega_m \), so its phase effects are far away.

\[\beta = \frac{g_m}{C_e} \]

Note: \(\beta' \) is feedback factor \(f \).

\[C_e > 3 \]

\[f \approx \frac{1}{10 \, R_{o2} \, C_L} \]

Assume \(1 - A_v = 2 - A_v > g_m \, R_{o2} \):

\[\frac{1}{C_e \, g_m \, R_{o2}} \approx \frac{1}{(10 \, R_{o2} \, C_L)} \rightarrow f \approx \frac{C_e}{10 \, C_L} = \frac{10 \, C_L}{10 \, C_L} = 1 \]

Codas like if \(g m_3 = g m_7 \) and \(C_e = 10 \, C_L \), then compensated amp should have PM = 90° when \(f = 1 \).
Problem 5

(a) If 1 diode passes 10 mA at 0.7 V, 10 diodes will pass 100 mA each at 0.90 V less or 0.90 - V.

(b) The voltage across T2 will be the same as the voltage difference between the two diodes: 0.90 V.

(c) V_{D1} and V_{D10} will trend as $-1.5 mV/K$, and the difference between them will end up as $V_T x (N) = \frac{kT}{q} \ln (i_0)$. Temp range is -33°C to +87°C, but just ±60°C is enough.

2. Room temp, $V_{D1} > 720 mV$, $V_{D10} > 640 mV$.

 $\rightarrow + 15 mV/10$ degrees Celsius, or $\pm 90 mV \approx 760 mV$.

 $V_T = \frac{kT}{q} \ln (i_0) = \frac{0.2 mV}{K}$

 $V_R = \frac{60 mV}{60 mV}$

2. Temp estimator, $V_T = 0.2 mV \cdot (300 - 60)$

 $= 72 mV \to 48 mV.$
Problem 6 (a)

We know $V_{ou} = 200\text{mV}$ and $V_{T} = 0.5\text{V}$, so, for M1A, $V_{gs} = V_{ds} = 700\text{mV}$. The current mixer will make currents in each branch equal, so we can guess is the same as M1A.

V_{gs} for M2A is also 700mV, so that top-right node is 300mV.

$$M1B = 4\times M1A; \text{ if current is the same then } V_{ou} \text{ is } \frac{5}{4} \text{v} \text{ or } 200\text{mV} \text{ less, or } 180\text{mV}. \text{ So we can conclude it } V_{gs} = 700\text{mV}, \text{ Vgs must be } 180\text{mV}.$$

(b) if $V_{r} = (100\text{mV})$ and $R = 10\text{k}\Omega$, $I_{z} = 10\text{mA}$, EES the current mixer will enforce $I_{t} = I_{z}$.

(i) $g_{m} = \frac{2I_{z}}{V_{gs}} = \frac{2 \times 10\text{mA}}{200\text{mV}} = 0.1\text{mS}$ (also $\frac{1}{2}$)

(d) $g_{m} = \frac{2 \times 10\text{mA}}{100\text{mV}} = 0.2\text{mS}$.

(e) As we reduce V_{DD}, g_{m} of M1A will stay constant, so its V_{ds} will stay at 700mV. V_{D} of M1B will also stay stuck at 200mV. If we assume we need $V_{ou} \geq 100\text{mV}$ for strong inversion, V_{DD} can be as low as 0.8V.

V_{ou} before M2A drops out of saturation.