If I_Z = I_{A1} + I_{A2}, then 1, 3, 4, 5 all have roughly the same current.

\[I_{Z} = 3I_{Z} = I_{A1} + I_{A2} \]

F 150
Folded-Cascade Biasing & Freq. response

Hog opens up - resistance load = 2 kΩ

\[I_{Z} = 3I_{Z} = I_{A1} + I_{A2} \]

Signals for, when press:
- team into black diagonal
- Lab 4.5 results
- Questions up

\[C_n = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{2}{\mu_{m} R_{L}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Curvature mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Curvature mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Curvature mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Curvature mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Curvature mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Curvature mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

Current mirror has same pull/beta as before

\[g_{m} = \frac{2}{\mu_{m} R_{L}} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]

\[C_{in} = \frac{-9 mF}{2} \]

\[R_{in} = \frac{9.5}{Z_{s,in}} \]
If not quadratic:

- Close based on approximated model

- Very small simulation

Sources of M38:
- High impedance at low frequencies
- Low impedance at high frequencies

\[V_{0.5} = \frac{19}{19 - \frac{1}{(2/10)}} \]

\[V_{0.5} = \frac{19}{19 - \frac{1}{2}} \]

Assuming \(I_{0} = 0 \),

\[V_{0.5} = V_{0} + V_{n} + V_{1} = V_{0} + 2 \times V_{n} \]

\[V_{0.5} = V_{0} \]

How to size M65?