$V_{in} = \frac{(11)(10)(2)}{200}$

$V_{out} = 0.25 V$

$V_{in} = 1.25 V$

$V_{out} = 0.5 V$

$R = \frac{2}{0.5} = 4 \Omega$

$C = \frac{2}{4} \cdot 10^{-12}$ Farads

$R_{load} = \frac{2}{1} = 2 \Omega$

$V_{out} = V_{in} - 0.5 V$

$V_{out} = 0.25 V$

$V_{in} = 1.25 V$

PDA, ABC will run at 0 Vdue.

6.5 V is a good safe voltage.

with the inputs and desired res amount

of error on Temp.

end goal: Over Temp, V out low many LSB

Paul: ADC SAR

today: Nguyen, Kees

next week: 7 at 11 teams

Suggested projects:

- Put circuit & results in PPT
- Have the circuit, save in Slack
- When you have results
- Swap out components as they loose noise
- Test over V, V, V, V
- Build a top down simulation of ideal blocks
-
\[V_{out} = \frac{V}{2} \left(\frac{V - V_D}{V} \right) \]

Body effect:

- Charge injection
- \(V_{out} \) close to \(V_D \)

MUX: 5
Stability - where is the dominant pole?

3 terminal reg

sRGB

Nmos

Pmos

Load

Resistors can low drop out regulators

Vin

Vin