This is a handwritten page with various mathematical expressions and notes. Here is a transcription:

![Image transcription here]
Assume $L > L_{\text{min}}$. A straightforward way is with a gain constant (any gain ok) then

$$C_{\text{in}} = C_{\text{ss}} + (1 - A) C_{\text{in}}$$

$$C_{\text{in}} = \frac{7 - \bar{V}_I}{7}$$

$$V \text{ o.v.} \geq \frac{1}{3}$$

Thus, $L = \frac{1}{C_{\text{ss}}}$.

However, L_{min} is determined by z_A (gain spec).

Now double A means the bond.

A smaller to need same spec.

Then must choose $L < L_{\text{min}}$ to stop.

If to increase by z_A (gain spec)

A to decrease by z_A (gain spec).

So, L_{min} you need let bond.

$C_{\text{in}} = \frac{35 + (1 - A) C_{\text{in}}}{7}$

C_{in} (gain constant)

$\bar{V}_I \leq \frac{7}{7}$

Double $V_I \leq \frac{7}{7}$ (gain constant).

with no gain constant (any gain ok) then

Low freq. $C_{\text{in}} \approx C_{\text{ss}} \approx 2 \times 350\mu$F

As cascade, same A little bigger.