Common mode gain

\[V_{in} \rightarrow V_{o} \]

\[R_s = \frac{R_o}{9m \cdot R_0} \]

\[R_0 = \frac{V_{in}}{V_{o}} \]

\[R_s \ll R_0 \]

\[V_{o} \approx \left(\frac{-9m \cdot R_0}{1 + 9m \cdot R_0} \right) V_{in} \]

Symmetrical conditioner. Could be connected from base to base.

If drain is small, 1st stage.

Final drain can flow.

(40/24on 16.5p W3L2)
\[R_0 = \frac{V_0}{I_0} = 0 \]

Wrong calculation, right answer.

\[R_0 = 6 \Omega \]

\[V = 3 \text{ V} \]

\[\text{Common node: } V \]

\[A_2 = -\frac{1}{2} R = +9 \Omega \]

\[\text{Virtual short: } \frac{1}{2}(0.018+0.028) \]

\[G = 0.03 \]