Sliding induced adhesion of stiff polymer microfiber arrays:

2. Microscale behaviour

By Bryan Schubert1,†, Jongho Lee2, Carmel Majidi1, Ronald S. Fearing1

1 Department of Electrical Engineering & Computer Sciences
2 Department of Mechanical Engineering
University of California
Berkeley, CA 94720, USA

The adhesive pads of geckos provide control of normal adhesive force by controlling the applied shear force. This frictional adhesion effect is one of the key principles used for rapid detachment in animals running up vertical surfaces. We developed polypropylene microfiber arrays composed of vertical, 0.3 µm radius fibers with elastic modulus of 1 GPa which show this effect for the first time using a stiff polymer. In the absence of shear forces, these fibers show minimal normal adhesion. However, sliding parallel to the substrate with a spherical probe produces a frictional adhesion effect which is not seen in the flat control. A cantilever model for the fibers and the spherical probe indicates a strong dependence on the initial

† To whom correspondence should be addressed. E-mail: bschuber@eecs.berkeley.edu

Article submitted to Royal Society
fiber angle. A novel feature of the microfiber arrays is that adhesion improves with use. Repeated shearing of fibers temporarily increases maximum shear and pull-off forces.

Keywords: bio-inspired adhesion, gecko, frictional adhesion, shear

1. Introduction

The gecko is well known to be excellent at scaling vertical surfaces and even clinging inverted to ceilings. However, these abilities are not the result of exceptional peel force, which can be found in standard pressure sensitive adhesives (PSAs), but instead are derived from clever use of moderate normal adhesion controlled by shear forces, termed frictional adhesion (Autumn et al. 2006b). Frictional adhesion allows geckos to control the magnitude of normal adhesion through the application of shear force. This lets them easily engage and disengage their adhesive pads (Gravish et al. 2007).

In frictional adhesion, a contact under tension is only maintained if the tensile contact force is at an angle less than α with respect to a surface, as shown for a single setal stalk (Autumn et al. 2000). Specifically, the angle α defines a relationship between forces tangential to the surface, the shear force F_t, and forces normal to the surface, F_n.

$$F_t \geq -\frac{F_n}{\tan \alpha}$$

(1.1)

This equation shows the minimum shear force necessary to withstand a given tensile force. Frictional adhesion has been shown in Tokay geckos by dragging setal arrays with their natural curvature as shown in figure 1(a). During loading, there may
be slip since the setal shafts are free to rotate in order to conform to the surface. Therefore, the red dashed line demarcating Coulomb friction in figure 1(b) provides a bound on the value of shear force that can be observed given compressive loading. During pull-off, the blue, dotted line in figure 1(b) marks the frictional adhesion angle, α, which is shown to be approximately 30° (Autumn et al. 2006b).

![Figure 1](image)

Figure 1. (a) Loading path of natural gecko setae. Arrows represent the motion of the setal shafts with respect to the surface. (b) Normal force, F_n, versus shear force, F_t, for a load-drag-pull (LDP) with the curvature of gecko setal shafts. Loading path starts near the origin. The broken lines marks Coulomb (–) friction with friction coefficient $f = 0.25$, and frictional adhesion (.) with $\alpha = 30^\circ$. Data borrowed with permission from Autumn et al. 2006b.

Frictional adhesion has recently been demonstrated in synthetic structures with large, angled stalks (380 μm base width) made out of soft polymer (0.3 MPa) (Santos et al. 2007), and 9.5 μm radius by 100 μm long stalks using 2.9 MPa spatular tips (Murphy, Aksak, & Sitti 2007). Interestingly, Varenberg & Gorb (2007) have shown an opposite effect using soft polymer stalks (3 MPa) with mushroom-shaped spatulas. In these mushroom-shaped structures, large shear forces rotate the tips,
reducing contact area and hence normal pull-off force. In this paper, we consider a harder polymer material (1 GPa). Hard polymers are more durable and possibly easier to make self-cleaning.

Adhesion properties for gecko-inspired synthetic adhesives (GSAs) can be understood by modelling the setae as angled cantilever beams (Gravish et al. 2007; Autumn et al. 2006a; Gao et al. 2005; Sitti & Fearing 2003; Spolenak et al. 2005). Naturally angled cantilever beams show greater compliance in the normal direction than vertical fibers, which must undergo buckling in order to conform to a surface (Autumn et al. 2006a; Majidi et al. 2006). However, when a shear force is applied to the tip of a vertical beam, it becomes effectively angled, increasing normal compliance and allowing more conformal contact of the array and surface. It follows that the application of shear also aids compliance of angled cantilever beams (Autumn et al. 2006a). This is an important property evolved by the gecko to reduce the effective modulus of its stiff fiber arrays \(E \) 1.5 GPa (Peattie et al. 2007)) to within the Dahlquist criterion for tack \(E < 100 \text{ kPa} \text{ at room temperature and } 1 \text{ Hz} \) (Autumn et al. 2006a). The angling of setal fibers combined with uncurling of spatular tips is a likely mechanism for frictional adhesion in the gecko.

In this paper, we show frictional adhesion with stiff \(E=1 \) GPa) polymer microfibers, through load-drag-pull (LDP) experiments similar to those used on gecko setal arrays (Autumn et al. 2006b). The arrays, shown in figure 2, consist of initially vertical polypropylene fibers of length 17-20 \(\mu\text{m} \) (due to fiber length variation) and radius 0.3 \(\mu\text{m} \), with density of \(42 \times 10^6 \text{ cm}^{-2} \). Repeated measurements reveal that the fiber array performance does not decrease even after more than 100 LDP trials. In fact, their shear force and normal adhesion increases with use, and they develop
slight directionality properties. We show that the observed frictional adhesion behaviour during pull-off is consistent with a cantilever model for the fibers.

This paper examines the behaviour of fixed patches of these fibers in small, isolated regions, less than 0.1 cm in diameter, using a spherical probe and light loading. By fixing the patch to a compliant substrate, normal adhesive forces can be sustained. In contrast, in Part 1 of this paper (Lee et al. 2007) examines the behaviour of a free patch contacting a flat surface, which has an area (4 cm²) more than 400 times larger than spherically-probed regions. Although the free patch can not sustain normal adhesion, the flat geometry and bendable backing used in Lee et al. (2007) can sustain estimated fiber shear forces 20 times greater than those used in spherical probe tests. The two parts of this paper show that sliding induced adhesion is obtained for both microscale and macroscale contacts.
2. Material and Methods

(a) Material preparation

Samples were fabricated by casting a single layer of 25 µm thick polypropylene (TF-225-4, Premier Lab Supply Inc., Port St. Lucie, FL, USA) in a vacuum oven at 200°C into a 20 µm thick polycarbonate filter (ISOPORE, Millipore Inc., Billerica, MA, USA) containing 0.6 µm diameter pores. The polycarbonate filter was etched in methylene chloride, and resulting samples were rinsed in iso-propyl alcohol and air dried. Flat control samples were produced by processing the 25 µm thick polypropylene film as above except without use of the filter.

The specific aspect ratio of the fibers was chosen to maximize fiber density while avoiding clumping for this particular molding process (Schubert et al. 2007). The molding process produces fibers that are naturally vertical, and therefore show poor adhesion from pure normal loading, similar to the non-adhesive default state exhibited by the gecko (Autumn & Hansen 2006). An adhesive force from pure normal loading can be achieved with permanently angled fibers (Aksak, Murphy & Sitti 2007; Murphy, Aksak & Sitti et al. 2007), but naturally vertical fibers have the interesting property of shear-activation, allowing the normal adhesive force to be switched on and off. This effect is important for quick engagement and release of adhesive pads.

(b) Measurement methods

Small contact regions (∼ 0.01 cm²) were probed with a spherical indenter to measure simultaneous normal and shear forces while minimizing alignment issues, such as co-planarity. The small contact area allowed examination of regions of
interest while avoiding damaged or defective areas. The spherical indenter also approximates contact with a single asperity, where fibers are in both compression and tension.

Deflections of the probe were measured by a two-axis force sensor (Schubert et al. 2007). The force sensor uses a spherical lens ($R = 5.17$ cm), four double cantilevers (stiffness in z-axis: 820 N m^{-1}, y-axis: 1100 N m^{-1}), two optical probes (MTI-2100 with MTI-2062E, MTI Instruments, Albany, NY, USA. 44 nm resolution at 1 kHz, 190 μm range), and a nano positioning stage (P-611 Nanocube, Physik Instrumente, Irvine, CA, USA, 10 nm resolution, 100 μm range) as shown in figure 3(a). The total resolution and range of the system is $36 \mu\text{N}$ to 156 mN in the z-direction and $48 \mu\text{N}$ to 209 mN in the y-direction. Each sample was fixed on the nano positioning stage using Gel-Pak (Gel-Pak, Hayward, CA, USA) and the stage was driven in the y and z-direction (see figure 3(a)) for indentation and load-drag-pull (LDP) experiments. Before testing, the spherical probe was cleaned with isopropanol.

Indentation experiments measure the normal and tangential forces that result from loading and unloading a sample only in the normal direction (z-direction).
In these experiments the probe indented the sample until a specified compressive force was reached (0.5 or 2.0 mN), then the probe retracted until no force was measured. LDP experiments measure combined shear and normal adhesion forces of the patches (Autumn et al. 2006b). In these experiments, the samples were loaded in the z-direction until a prescribed normal force was reached (0.5 or 2.0 mN), then the samples were displaced tangentially (y-direction), and finally, they were unloaded in the z-direction as shown in figure 3(b). The tangential displacement for experiments was 60 μm unless stated otherwise. This distance captures the interesting behaviour of the fibers (see Results and Supplement). For most experiments, normal loading, shearing, and normal pull-off were performed at 10 μm s$^{-1}$ for both the indentation and LDP experiments. This speed was chosen to stay within the range of other LDP experiments on synthetic (Murphy et al. 2007) and natural gecko fiber arrays (Autumn et al. 2006b).

3. Results

Similarly to Lee et al. (2007), LDP tests demonstrated increasing shear forces while sliding. While Lee et al. (2007) showed low peel strength (0.15 N/m) on the whole patch, here a frictional adhesion effect was observed during normal pull-off with a spherical probe, whereby the normal tensile force was proportional to shear force. Repeated LDP testing showed that fiber arrays continue to function after more than 100 experiments, and they gain shear force and pull-off force with each trial.

Article submitted to Royal Society
LDP experiments were conducted on a fiber array and smooth control as shown in figure 4(a) and 4(b). Figure 4(a) shows that the shear force rises dramatically while the probe is being dragged across the sample (between points 1 and 2). For Coulomb friction \(F_t = f F_n \), this would correspond to a coefficient of friction \(f > 10 \), as shown previously in Majidi et al. (2006). In contrast, experiments on the control in figure 4(b) show a relatively low shear force, and a coefficient of friction \(f = 0.2 \), typical of a hard polymer on glass.

Figure 4(c) is a plot of a pure normal indentation without sliding on a fibrillar sample. This figure shows that without shearing the fibers, there is no measurable normal adhesion. Figure 4(d) takes the data from (a), (b) and (c) and plots them in force space, to more clearly show the frictional adhesion properties of the fiber arrays. Initially, the normal and shear forces stay within the conventional Coulomb friction cone, \textit{and the probe indents approximately} 4 \(\mu \text{m} \text{ in the } z\text{-direction}. \) Then, when dragging begins at point 1, the normal force falls and the shear force rises quickly, showing that the fibers are bending into a more compliant configuration. \textit{After moving 60 \(\mu \text{m} \text{ in the } y\text{-direction} \) the probe is pulled away at point 2, and normal adhesion is evident while the shear force persists. The retraction is bounded by a frictional adhesion angle of approximately \(\alpha = 22^\circ \), and the maximum pull-off force occurs at an indentation depth of 2 \(\mu \text{m} \). Although the reported indentation depths are not explicitly shown in figure 4(d), they can be estimated from the probe speed of 10 \(\mu \text{m s}^{-1} \).

In tests on the natural setal arrays (Autumn et al. 2006b), frictional adhesion is exhibited during the drag phase, as well as the pull phase. This is because the
Figure 4. LDP tests with a spherical probe on (a) fibrillated patch and (b) smooth polypropylene control. (c) Normal indentation and pull-off without drag (Load/Pull) on fibrillated patch shows unmeasurable adhesion. (d) Plots (a), (b) and (c) in force space clearly demonstrating frictional adhesion. The broken lines show Coulomb friction (−○) with $\mu = 0.2$, and frictional adhesion (−●) with $\alpha = 22^\circ$. Numbers along curves correspond to the loading stages shown in figure 3(b). Probe speed $10 \, \mu\text{m s}^{-1}$.

Natural setae pull into tension while dragging. In contrast, this effect is not seen in the LDP experiments shown in figure 4 possibly due to the spherical probe geometry, which causes some fibers to be in compression while others are in tension (see Discussion). The lack of a spatula is also likely a factor, as structures with a
Figure 5. LDP tests with 1 µm retraction (point 2.5) on (a) fibrillated patch and (b) smooth polypropylene control. (c) Normal indentation and pull-off without drag (Load/Pull) on fibrillated patch shows minimal adhesion. (d) Plots (a), (b) and (c) in force space demonstrating frictional adhesion. The broken lines show Coulomb friction (- - -) with $f = 0.2$, and frictional adhesion (- - - -) with $\alpha = 22^\circ$. Numbers along curves correspond to the loading stages shown in figure 3(b). Probe speed $10 \mu \text{m s}^{-1}$

spatula such as those in Murphy, Aksak & Sitti (2007) showed tension developed during sliding. To demonstrate sliding with tensile load, the balance of tensile and compressive fibers can be shifted by retracting the probe slightly during the drag phase. Figure 5 shows the results of performing a retraction of 1 µm during the
Figure 6. Normal force versus shear force for LDP experiments performed at speeds between 5 and 100 \(\mu \text{m s}^{-1} \). drag phase (point 2.5). The fibrillar patches lose some shear force because the net normal force is now tensile, but, as expected, the flat control sample loses contact completely. The force space plot in figure 5(d) has a similar shape as that in figure 4(d), so it is reasonable to extract frictional adhesion information from either set of data.

In many adhesive materials, viscoelastic dissipative effects are significant. The LDP tests were repeated with sliding velocities between 5 and 100 \(\mu \text{m s}^{-1} \), and as shown in figure 6, no major differences were observed. The lack of velocity dependence for these polypropylene micro fiber arrays is discussed further in Lee \textit{et al.} (2007), and shown for the whole patch in the range from 48-240 \(\mu \text{m s}^{-1} \).

Figure 3(b) depicts the fibers being buckled slightly in step 1 due to the normal indentation of the probe. Because of this loading, it takes a short sliding distance to orient and engage the fibers. Figure 7 shows the normal and shear forces for LDP
experiments with tangential displacements of 2, 20 and 60 µm. These plots show that the shear force builds steadily over approximately 20 µm of displacement, while the normal force drops off until both forces start to plateau. This effect is indicative of the fibers bending over until they reach an equilibrium sliding configuration. As predicted by frictional adhesion (equation 1.1), the magnitude of the pull-off force grows as the shear force builds from sliding. More complete data for both preload values can be found in the Supplement.

(b) Repeated LDP tests

To test durability and repeatability, over 100 LDP experiments were performed on five different fiber patches and two separate controls. Interestingly, repeated LDP tests have the effect of increasing shear and pull-off forces. Figure 8 shows the first and the 146th shear experiment on a fiber array. Prior to repeated shearing, an indentation experiment (Load/Pull) (grey line in figure 8) shows zero normal pull-off force. It is seen from figure 8 that the sample’s shear and tensile adhesive

Figure 7. (a) Normal force and (b) shear force for LDP experiments performed over sliding distances of 2, 20 and 60 µm.
Figure 8. Normal vs. shear force shows increasing frictional adhesion after 146 LDP trials in the same spot. Also shown is a Load/Pull experiment performed prior to LDP experiments. Numbers along curves correspond to the loading stages shown in figure 3(b).

Forces greatly increase from repeated LDP tests. This increase is possibly due to angling of the fibers (see Discussion and Lee et al. (2007)). The maximum normal pull-off force and its corresponding shear force (point 3 in figure 8) for each trial is displayed in figure 9. For a given preload and sample, up to 150 tests were performed on a single area. Therefore, the trends shown in figure 9 reflect the behaviour noted in figure 8. The control, however, does not show any increase, staying centred near zero normal and shear force during pull-off. Figures 9(a) and (b) show the data bounded by a range of α values that encompass the range of values observed in the various samples. These differences are due to variations in the number of tests on a given spot, and the non-uniformity of fibers (e.g. fiber length variation) across a sample. Non-uniformity of the fibers accounts for different initial angle values, and then repeated tests in a particular area increases the angle.

Article submitted to Royal Society
Figure 9. Data points represent the shear force measured at the highest pull-off value for LDP experiments with preloads of (a) 0.5 mN (117 trials for microfiber patches and 182 trials for controls) and (b) 2.0 mN (404 trials for microfiber patches and 75 trials for controls) on 5 microfiber patches and 2 smooth controls. Dashed lines represent the tangent of the critical angle of detachment, α.

A moderate directionality effect was observed when, after performing an LDP experiment in one direction ($L \rightarrow R$) several times, the shear direction was reversed ($R \rightarrow L$). For example, in $L \rightarrow R$ drags on a sample, maximum shear force at zero normal force was 1.5 mN and pull-off force was -0.2 mN. After reversing dragging direction, maximum shear force at zero normal force was 0.7 mN and pull-off force was less than -0.1 mN.

4. Discussion

To explain the results from the spherical indenter, we use a model that considers adhesive sliding of a single fiber on a sphere, as well as ensemble behaviour over the contact region. This model can also be used to explain the effects of repeated loading of the fibers. A comparison of the synthetic and natural gecko fibers shows...
that, while simple vertical stalks are enough to achieve frictional adhesion, higher level structures are needed to improve performance.

(a) Frictional adhesion cantilever model

Under tension loading (the pull-off phase) with small deflections, the fibers can be treated as cantilevers (Sitti & Fearing 2003). This is in contrast to Lee et al. (2007), where the complete elastica solution must be considered because of the higher loads. However, the cantilever model does not hold during the load and drag phases where fiber buckling is likely to occur.

Let stalk length and radius be l and r, respectively. For a cylindrical cantilever with modulus E, the lateral stiffness is:

$$k_\theta = \frac{F_\theta}{\Delta_\theta} = \frac{3\pi r^4 E}{4l^3}.$$

With $E = 1$ GPa, $r = 0.3 \mu m$, and $l = 20 \mu m$, the lateral stiffness is 2.4 mN m$^{-1}$.

The cantilever can be modelled as a rigid rod with a spring-loaded rotary joint at the base for small deflections (Howell 2001) as shown in figure 10. Rotation of the rod requires an applied force F_θ:

$$F_\theta = k_\theta l(\theta_o - \theta).$$

If only the tip makes contact with the sphere during pull-off, then it is assumed that sliding occurs when $F_t = \pm \tau A_t(F_n)$, where τ is the interfacial shear strength (10 MPa for polypropylene on glass, (Pooley & Tabor 1972)) and the tip-substrate
true contact area A_t follows Johnson-Kendall-Roberts (JKR) theory† (Johnson et al. 1971):

$$A_t(F_n) = \pi \left\{ \frac{3(1 - \nu^2)R_t}{4E} \left(-F_n + 3\pi W_{ad}R_t \right. \right.$$

$$+ \sqrt{-6\pi F_n W_{ad}R_t + (3\pi W_{ad}R_t)^2} \left. \right) \right\}^{2/3}, \quad (4.3)$$

where R_t is the tip radius, ν is Poisson’s ratio, and W_{ad} is the work of adhesion (approximately 30 mJ m$^{-2}$ for polypropylene on glass (Gracias & Somorjai 1998)). By linearizing equation (4.3) about $F_n = 0$ we can express the necessary tangential force for sliding as a function of the normal load F_n:

$$F_t = \pm \tau A_t(F_n) \approx \pm \tau \left[A_t(F_n = 0) + \frac{dA_t(F_n = 0)}{dF_n} F_n \right] \approx \pm \mu(F_o + F_n) \quad (4.4)$$

where $F_o = \frac{9}{2}\pi R_t W_{ad}$ and $\mu = \tau \frac{d}{dF_n} A_t(F_n = 0)$. Due to the molding fabrication process, the ends of the fibers are not hemispherical (see figure 2), and likely do

† The Tabor parameter (Johnson 1997) is approximately 1.6 which suggests the contact is within the DMT-JKR transition region, but it is closer to the JKR region. The difference between the DMT-JKR transition region and JKR is slight enough that we will assume JKR for simplicity.
not make a very good contact with the sphere. To fit the experimental data, we used \(R_t = 0.15 \mu m \), only half the actual fiber radius. With this contact radius, we obtain \(\mu = 0.2 \) and \(F_o = 64 \) nN. The JKR pull-off force for a sphere contacting a flat is \(F_{JKR} = \frac{3}{2} \pi R_t W_{ad} \) (Johnson, Kendall & Roberts 1971), which gives 21 nN for our tips.

During pull-off, it can be seen from figure 10 that fiber tips are sliding to the left on the sphere, hence for quasi-static equilibrium, \(F_t > 0 \). Thus we choose the side of the “friction cone” which corresponds to \(F_t = +\mu(F_o + F_n) \), and from (Sitti & Fearing 2003), the normal force is

\[
F_n(\theta) = \frac{-k_\theta(\theta_o - \theta) - \mu F_o \sin \theta}{\mu \sin \theta + \cos \theta}.
\]

(4.5)

A related expression was derived by Tian et al. (2006), assuming that the lateral stiffness \(k_\theta \) was negligible and the fiber was in pure tension.

The fiber tip contact location on the sphere can be calculated as the intersection of circles with radius \(l \) (the fiber length) and sphere radius \(R \), with \(\theta = f(l, R, \delta, x) \), where \(\delta \) is the indentation depth and \(x \) is the location of the fiber base. During unloading, a fiber contact is maintained only for \(F_n > -F_{JKR} \). Due to fiber height variation, the actual number of contacts and hence the force will be reduced. Optical microscope examination of patches shows an approximately uniform distribution of fiber lengths from 17 to 20 \(\mu m \). For a given fiber location \(x \) we estimate effective \(F_n \) by averaging over this range of fiber lengths. Figure 11(a) shows estimated normal and shear forces under the centreline of the sphere for an indentation depth of \(\delta = 4 \mu m \). The normal component without fiber height variation has twice the peak compressive force of the array with uniformly distributed fiber lengths. The normal force follows the expected shape, with the central region in compression and outer...
Figure 11. (a) Calculated normal and shear force on fibers under centerline of probe during pull-off for probe indentation 4 µm, and fibers inclined at $\theta_o = 70^\circ$ from horizontal. Fiber height variation significantly reduces normal force. (b) Force space plot of predicted normal and shear forces during pull-off for fibers with rest angles of 70° and 85°, and plots of the pull-off portion of the first LDP trial and the 146th trial for a polypropylene fiber array.

For a given indentation δ, the total normal and shear forces on the sphere are given respectively by:

$$F_{sphere}(\delta) = \rho \int \int F_n(\theta(x,y,\delta)) dxdy$$ \hspace{1cm} (4.6)

$$V_{sphere}(\delta) = \rho \int \int V_t(\theta(x,y,\delta)) dxdy$$ \hspace{1cm} (4.7)

where $F_t = \mu(F_o + F_n)$ for fibers in contact and 0 otherwise, and $\rho = 42 \times 10^6$ cm$^{-2}$ is the fiber density. The integration is performed numerically, assuming fiber height variation, and that fiber bending is restricted to the plane parallel to the probe drag direction. The predicted net normal and shear force during pull-off is shown in figure 11(b) for $\theta_o = 70^\circ$ and 85°.
In addition to agreement with normal and shear force values, the cantilever model also predicts that the maximum pull-off value occurs at 2 µm indentation depth. Although at δ = 2 µm, fibers are still compressed (θ < θ₀), a large negative F_n is required for fibers to slide due to the adhesive component F_o. Hence the peak normal adhesive force occurs while the sphere is indenting the surface, rather than at δ = 0 as predicted by a simple vertical spring model (Schubert et al. 2007). Taking this into account, the force per individual fiber in the sphere pull-off test is modest (\approx 10 nN), primarily due to small R_t in tip contact as a result of tip roughness as seen in figure 2.

The data fit of figure 11(b) depends on two parameters, estimated fiber tip radius R_t and nominal fiber angle θ_o. The fiber tip radius estimate of 0.15 µm was used for both experimental fits, and only the angle parameter was matched. The model shows good general agreement with the experiment, in particular, the coupling of shear and normal force in pull-off. The model highlights the sensitivity to initial angle θ_o. An initial angle of 45° would increase pull-off force from -0.7 mN to -3 mN. The results of the modelling and LDP experiments make a compelling argument for fiber angling. Fiber angling by shearing has been observed in optical microscope images in Lee et al. (2007), where the shear forces per fiber are about 20 times higher and the contact area is greater. The much smaller shear forces generated by the spherical probe test make it difficult to visually observe any angling in the small contact area.

Clearly, contact with a smooth, planar surface can result in larger tensile forces than with a spherical probe, since all fibers can be in tension. It is interesting to note that even a 5 cm radius probe has significant height variation over a 0.12 cm
Table 1. *Shear and normal force during pull-off*

(Time column refers to amount of time elapsed after repeated LDP experiments ceased. Time elapsed between trials was about 10 sec.)

<table>
<thead>
<tr>
<th>trial</th>
<th>shear (mN)</th>
<th>normal (mN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.24</td>
<td>-0.05</td>
</tr>
<tr>
<td>146</td>
<td>2.16</td>
<td>-0.63</td>
</tr>
<tr>
<td></td>
<td>time (hour)</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>1.74</td>
<td>-0.36</td>
</tr>
<tr>
<td>2</td>
<td>1.64</td>
<td>-0.29</td>
</tr>
<tr>
<td>17</td>
<td>0.26</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

diameter contact region, reducing maximum tensile forces on slightly angled 20 µm long fibers. The developed model for a spherical probe can also be used to predict tensile and shear contact forces for smaller spherical asperities.

(b) *Durability and improvement with use*

The cantilever model predicts that increased performance with use may be attributed to angling of fibers. However, once the repeated testing stops, the fibers apparently regain their initial shape after hours of rest. This property is demonstrated in table 1 which shows the shear and normal forces measured on trial 1 and 146 (see figure 8), and then values measured after the repeated shearing ceased. Over the course of 17 hours the fibers return to their initial behaviour. It is interesting to note that Ariyama (1996) showed stress-relaxation of isotactic polypropylene to steady state after 800 seconds, which suggests that fibers may relax to a vertical, non-adhesive conformation with disuse. This property of polypropylene means that
any increased performance will be lost if not constantly used. However, it also shows that the fibers are resilient and resistant to wear. The next obvious step is to create permanently angled fibers that show high performance with their first use. This could possibly be achieved with a process similar to that used by Aksak, Murphy & Sitti (2007).

(c) Natural vs. synthetic geometry

As defined in equation (1.1), the interdependence of the shear force and the maximum pull-off force in the frictional adhesion model can be expressed through a critical angle α. In figure 9, the critical angle is shown to range between approximately 15° and 24° for 0.5 mN preloads and between 5° and 21° for 2.0 mN preloads. In the gecko, the angle ranges from $\alpha = 25^\circ$ to 30° (Autumn et al. 2006b), and soft polymer structures produce an $\alpha \approx 35^\circ$ (Santos et al. 2007).

A higher frictional adhesion angle corresponds to a structure that is more adhesive in the normal direction, so it is not surprising that the soft polymer structures have the highest angle and the stiffer polypropylene fibers have the lowest. However, material stiffness is not the only indicator of frictional adhesion angle. As noted earlier, polypropylene has an elastic modulus near that of β-keratin, and yet the natural setal arrays have a higher frictional adhesion angle. This difference is due in part to the lower effective modulus of the gecko’s fiber arrays. Vertical polypropylene fibers rely on shear forces to angle the fibers and generate necessary compliance, whereas setal arrays are inherently compliant as a result of natural angling and hierarchy (Autumn et al. 2006a).

The frictional adhesion angle is also influenced by the spatular tips found on
the gecko’s adhesive fibrils that provide greater contact area than the blunt tips of our synthetic fibers. However, side contact (Majidi et al. 2005; Majidi 2007) may be a possible substitution for tip structure, provided the fibers are subjected to high shear forces, like those seen in Lee et al. (2007). We thus expect that hierarchy and angling, coupled with tip structure or side contact, may generate frictional adhesion angles and forces closer to the natural gecko.

5. Conclusion

Naturally vertical fibers produced from a material with similar stiffness to the gecko’s show frictional adhesion, the same property used by geckos to scale walls. The experimental results with a spherical probe match reasonably to a cantilever model for the fibers using a JKR approximation for sliding forces. The synthetic fibers possess high durability, surviving over 100 LDP experiments with marked improvement in pull-off and shear force, and slight improvement in directionality. These gains are likely the result of temporary angling, and the patch returns to a non-adhesive mode with disuse. Processes to permanently angle fibers could be pursued to reduce training requirements. With the lightly loaded conditions tested, we estimate \(\approx 10 \text{nN} \) tensile force per fiber from the LDP experiment, at \(\alpha = 22^\circ \). In comparison, (Autumn et al. 2000) estimated 20 nN to 200 nN tensile force per spatula (measured \(\approx 20 \mu\text{N} \) per seta, and 100-1000 spatula per seta) at \(\alpha = 30^\circ \).

In order to increase the force of the polypropylene fibers, more contact at the tips needs to be generated by modifying their structure or producing enough shear to create side contact. However, achieving frictional adhesion and durability with
synthetic fiber arrays already represents a significant step toward producing a true
deko-inspired adhesive that can be put to practical use.

This work was supported by NSF NIRT (No. EEC-034730). The authors wish to thank
Brian Bush for SEM work, Kellar Autumn for the use of the data for figure 1, and Erik
Steltz, Aaron Hoover, Nick Gravish and Stanley Baek for their helpful comments.

References

Aksak, B., Murphy, M. & Sitti, M. 2007 Adhesion of biologically inspired vertical and

Ariyama, T. 1996 Viscoelastic-plastic behaviour with mean strain changes in polypropylene.

Autumn, K., Liang, Y. A., Hsieh, S.T., Zesch, W., Chan, W.-P., Kenny, W. T., Fearing,
doi:10.1038/35015073

Autumn, K., Majidi, C., Groff, R. E., Dittmore, A. & Fearing, R. S. 2006a Effective elastic

Autumn, K., Dittmore A., Santos, D., Spenko, M. & Cutkosky, M. 2006b Frictional ad-

Autumn, K. & Hansen, W. 2006 Ultrahydrophobicity indicates a non-adhesive default

Article submitted to Royal Society

Article submitted to Royal Society

doi:10.1098/rsif.2007.0222

Article submitted to Royal Society