Problem 1. $Y = X_1 + X_2 + \ldots + X_n$

Method 1: The maximum value taken by Y is n.
Y takes on the value k, $(0 \leq k \leq n)$, when k of the X_i's are 1 and the rest are 0.
Hence $P(Y = k) = \binom{n}{k}p^k(1-p)^{n-k}$

Method 2: $G_{X_i}(z) = E[z^{X_i}] = z^1p + z^0(1-p) = zp + 1 - p$
$G_Y(z) = E[z^Y] = E[z^{\sum_{i=1}^n X_i}]$

Since all X_i are independent,
$G_Y(z) = E[z^Y] = \prod_{i=1}^n E[z^{X_i}] = (zp + 1 - p)^n$

which is the same as the probability generating function of a Binomial Random variable with parameters n and p. $B(n,p)$.

Method 3: Define $Y_1 = X_1$,
$Y_2 = X_1 + X_2 = Y_1 + X_1$
$Y_3 = Y_2 + X_2$ and so on
then $Y_n = Y_{n-1} + X_n$

$P(Y_2 = y) = \sum_{k=0}^1 P(Y_1 = n - k)P(X_2 = k)$

The above is convolution of the pmf of Y_1 and X_2.

$$P(Y_2 = y) = \sum_{k=0}^1 P(Y_1 = y - k)P(X_2 = k)$$
$$= \sum_{k=0}^1 P(Y_1 = y)P(X_2 = 0) + P(Y_1 = y - 1)P(X_2 = 1)$$
$$= P(X_1 = y)P(X_2 = 0) + P(X_1 = y - 1)P(X_2 = 1)$$
$$= \binom{n}{y}p^y(1-p)^{n-y}$$

Next we will try to prove that Y_n is $B(n,p)$ by induction i.e. $P(Y_n = y) = \binom{n}{y}p^y(1-p)^{n-y}, (0 \leq y \leq n)$
Assume that Y_{n-1} is $B(n-1, p)$ i.e. $P(Y_{n-1} = y) = \binom{n-1}{y}p^y(1-p)^{n-1-y}(0 \leq y \leq n-1)$.

$$P(Y_n = y) = \sum_{k=0}^{1} P(Y_{n-1} = n-y)P(X_n = k)$$
$$= P(Y_{n-1} = y)P(X_n = 0) + P(Y_{n-1} = y-1)P(X_n = 1)$$
$$= \binom{n-1}{y}p^y(1-p)^{n-1-y}(1-p) + \binom{n-1}{y-1}p^{y-1}(1-p)^{n-y}p$$
$$= \binom{n}{y}p^y(1-p)^{n-y}$$

Problem 2.

$$\mathcal{X} = \{X_1, X_2, \ldots, X_m\} \quad \mathcal{Y} = \{X_{m+1}, X_{m+2}, \ldots, X_n\}$$

We can easily derive $P(\mathcal{X} \in S_x, \mathcal{Y} \in S_y) = P(\mathcal{X} \in S_x)P(\mathcal{Y} \in S_y)$

If $g(\mathcal{X}) \in G_a$, then $g^{-1}(G_a)$ could be an arbitrary region in the m-dimensional probability space. Such a space can be approximated via a countable number (possibly infinitely many) of disjoint events.

For example consider a two dimensional space spanned by two RVs as shown in Figure 1.

Then,

$$P(f(X_1, X_2) \in F_a) = P(\{X_1 \in X_{1a}, X_2 \in X_{2a}\} \cup \{X_1 \in X_{1b}, X_2 \in X_{2b}\} \cup \{X_1 \in X_{1b}, X_2 \in X_{2a}\})$$
Hence we can write,
\[P(g(X) \in G_a) = P(\bigcup_i X_i \in S_{X_i}) \]
and
\[P(g(Y) \in G_b) = P(\bigcup_j Y_j \in S_{Y_j}) \]

\[P(g(X) \in G_a, h(Y) \in H_b) = P(\{\bigcup_i X_i \in S_{X_i}\} \cap \{\bigcup_i Y_i \in S_{Y_i}\}) \quad (1) \]
\[= P(\bigcup_{i,j} \{X_i \in S_{X_i} \cap Y_j \in S_{Y_j}\}) \quad (2) \]
\[= \sum_{i,j} P(X_i \in S_{X_i}) P(Y_j \in S_{Y_j}) \quad (3) \]
\[= \sum_{i,j} P(X_i \in S_{X_i}) \sum_j P(Y_j \in S_{Y_j}) \quad (4) \]
\[= P(\{\bigcup_i X_i \in S_{X_i}\}) P(\{\bigcup_j Y_j \in S_{Y_j}\}) \quad (5) \]
\[= P(g(X) \in G_a, h(Y) \in H_b) \quad (6) \]
\[= P(g(X) \in G_a) P(h(Y) \in H_b) \quad (7) \]

A simpler way to solve the problem is to go back to the equation
\[P(X \in S_x, Y \in S_y) = P(X \in S_x) P(Y \in S_y) \]
Since this is true for all sets \(S_x\) and \(S_y\), we choose \(S_x = g^{-1}(G_a)\) and \(S_y = h^{-1}(H_b)\). In that case we have:

\[P(g(X) \in G_a, h(Y) \in H_b) = P(X \in g^{-1}(G_a), Y \in h^{-1}(H_b)) \quad (8) \]
\[= P(X \in g^{-1}(G_a)) P(Y \in h^{-1}(H_b)) \quad (9) \]
\[= P(g(X) \in G_a) P(h(Y) \in H_b) \quad (10) \]

Problem 3. \(Y = X_1 + X_2 \)

\[f_Y(y) = \int_{-\infty}^{+\infty} f_{X_1}(y - x) f_{X_1}(x) dx \]
Since \(X_1\) and \(X_2\) are \(U[0,1]\), we have the following constraints: \(0 \leq x \leq 1\) and \(0 \leq y - x \leq 1\) which give the following limits \(x \leq y\) and \(y - 1 \leq x\)

When \(y > 1\) we have the following constraints: \(x \leq 1\) and \(y - 1 \leq x\)
Similarly, when \(y < 1\) we have the following constraints: \(x \leq y\) and \(0 \leq x\)

When \(y > 1\), \(f_Y(y) = f_{y-1}^1 dx = 2 - y\)
When \(y < 1\), \(f_Y(y) = f_0^y dx = y\)

Hence,

\[f_Y(y) = \begin{cases}
0 & y < 0 \\
\frac{y}{1-y} & 1 \leq y < 1 \\
2-y & 1 \leq y < 2 \\
0 & y \geq 2
\end{cases} \]
Problem 4.

\[f_{X_1X_2}(x_1, x_2) = \begin{cases} 1 & 0 \leq x_1, x_2 \leq 1 \\ 0 & \text{otherwise} \end{cases} \]

\[Y = (Y_1, Y_2)^T = A(X_1, X_2)^T \]

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \]

The jpdf of \(Y_1 \) and \(Y_2 \) exists only when the determinant of the matrix \(A \) exists i.e. \(|A| \neq 0 \).

When the above is true, we can find \(f_{Y_1Y_2}(y_1, y_2) \) as follows:

\[X = (X_1, X_2)^T = A^{-1}(Y_1, Y_2)^T \]

\[A^{-1} = \frac{1}{|\text{mathbf{A}}|} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix} \]

\[|A| = A_{11}A_{22} - A_{12}A_{21} \]

\[X_1 = \frac{1}{|A|}(A_{22}Y_1 - A_{12}Y_2) \]

\[X_2 = \frac{1}{|A|}(-A_{21}Y_1 + A_{12}Y_2) \]

\[f_{Y_1Y_2}(y_1, y_2) = \frac{1}{|A|}f_{X_1X_2}(\frac{1}{|A|}(A_{22}Y_1 - A_{12}Y_2), \frac{1}{|A|}(-A_{21}Y_1 + A_{12}Y_2)) \]

Remember that \(0 \leq \frac{1}{|A|}(A_{22}Y_1 - A_{12}Y_2) \leq 1 \)

and \(0 \leq \frac{1}{|A|}(-A_{21}Y_1 + A_{12}Y_2) \leq 1 \)

If \(|A| = 0 \), then \(A_{11}A_{22} = A_{12}A_{21} \)

Let \(K = \frac{A_{12}}{A_{22}} = \frac{A_{11}}{A_{21}} \)

Then \(Y_1 = K A_{21}X_1 + K A_{22}X_2 = KY_2 \)

\(Y_1 \) is a multiple of \(Y_2 \) and hence the jpdf of \(Y_1 \) and \(Y_2 \) does not exist. A plot of \(Y_2 \) vs \(Y_1 \) is a straight line with a slope of \(K \).

If the joint pdf does not exist we can use the joint probability distribution function (joint cdf) to characterize the the distribution of \(Y \).

Problem 5.

Let us first compute, for \(x < y \),

\[P[X_2 \in (y, y + dy) \mid X_1 \land X_2 = x] = \frac{P(X_2 \in (y, y + dy), X_1 \in (x, x + dx))}{P(X_1 \land X_2 \in (x, x + dx))} = \frac{\lambda_1 e^{-\lambda_1 x}dx \lambda_2 e^{-\lambda_2 y}dy}{(\lambda_1 + \lambda_2)e^{-(\lambda_1 + \lambda_2)x}dx} = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}e^{-\lambda_2(y-x)}dy. \]
We used the easy fact that $X_1 \land X_2$ is exponentially distributed with rate $\lambda_1 + \lambda_2$. Integrating this expression over $y \in [x, \infty)$ we find that

$$P[X_2 \geq X_1 \mid X_1 \land X_2 = x] = \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

Problem 6. Note that $E[(X_i - \mu)(X_j - \mu)] = E[(X_i - \mu)]E[(X_j - \mu)]$ since X_i and X_j, $i \neq j$ are independent. Further $E[X_i - \mu] = 0$.

$Y = X_1 + 2X_2 + X_3^2$

$E[X_i] = \int_0^1 xdx = \frac{1}{2}$

$E[X_i^2] = \int_0^1 x^2dx = \frac{1}{3}$

$E[X_i^3] = \int_0^1 x^3dx = \frac{1}{4}$

$E[X_i^4] = \int_0^1 x^4dx = \frac{1}{5}$

$E[Y] = E[X_1] + 2E[X_2] + E[X_3^2] = \frac{1}{2} + 2 \times \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$

$E[Y^2] = E[X_1^2] + 4E[X_2^2] + E[X_3^4] + 4E[X_1X_2] + 4E[X_2X_3^2] + 2E[X_1X_3^2]$ Since X_1, X_2 and X_3 are independent. $E[X_1X_2] = E[X_1]E[X_2]$ and so on.

$$= \frac{1}{3} + 4 \times \frac{1}{3} + \frac{1}{5} + 4 \times \frac{1}{4} + 4 \times \frac{1}{6} + 2 \times \frac{1}{6}$$

$$= \frac{1}{3} + \frac{4}{3} + \frac{1}{5} + \frac{1}{2} + \frac{2}{3} + \frac{1}{3}$$

$$= \frac{58}{15}$$

$$\text{var}(Y) = E[Y^2] - E[Y]^2 = \frac{58}{15} - \frac{121}{36} = 0.5$$

Problem 7. By Chebyshev’s inequality we have,

$$P\left(\frac{X_1 + X_2 + \cdots + X_n}{n} - \mu \geq \epsilon \right) \leq \frac{E[(\frac{1}{n} \sum_{i=1}^{n} X_i - \mu)^2]}{\epsilon^2}$$

$$= \frac{1}{\epsilon^2 n^2} E\left[\sum_{i=1}^{n} (X_i - \mu)^2 + 2 \sum_{1 \leq i,j \leq n, i \neq j} (X_i - \mu)(X_j - \mu) \right]$$

$$= \frac{1}{\epsilon^2 n^2} \sum_{i=1}^{n} E[(X_i - \mu)^2] + 2 \sum_{1 \leq i,j \leq n, i \neq j} E[(X_i - \mu)]E[(X_j - \mu)]$$

$$= \frac{n \sigma^2}{\epsilon^2 n^2} + \frac{\sigma^2}{\epsilon^2 n}$$
Problem 8. First lets find the pmf of Y.

If $x \geq m$,
$$P(Y = m \mid X = x) = \binom{x}{m} p^m (1 - p)^{x-m}$$
else
$$P(Y = m \mid X = x) = 0$$

$$P(Y = m) = \sum_{x=m}^{\infty} P(Y = m \mid X = x) P(X = x)$$
$$= \sum_{x=m}^{\infty} \binom{x}{m} p^m (1 - p)^{x-m} \frac{\lambda^x e^{-\lambda}}{x!}$$
$$= \frac{p^m (1 - p)^{-m} e^{-\lambda}}{m!} \sum_{x=m}^{\infty} \frac{(1 - p)^x \lambda^x}{(x - m)!}$$
$$= \frac{p^m (1 - p)^{-m} \lambda^m e^{-\lambda} (1 - p)^m}{m!} \sum_{y=0}^{\infty} \frac{((1 - p)\lambda)^y}{y!}$$
$$= \frac{(\lambda p^m e^{-\lambda} e^{-\lambda} (1 - p))^{m+n}}{m!}$$
$$= \frac{(\lambda p)^m e^{-\lambda} e^{-\lambda} (1 - p)}{m!}$$

Note that \(\sum_{n=0}^{\infty} x^n = e^x \)

Hence Y is $P(\lambda p)$

Similarly we can prove that, Z is $P(\lambda(1 - p))$

Now to prove independence. Consider the general case when we paint red balls with probability p and blue balls with probability q, where $p + q$ may be less that 1. In that case.

$$P(Y = m, Z = n) = \sum_{x=m+n}^{\infty} P(Y = m, Z = n, X = x)$$
$$P(Y = m, Z = n) = \sum_{x=m+n}^{\infty} P(Y = m, Z = n \mid X = x) P(X = x)$$

In our case $p + q = 1$ so $P(Y = m, Z = n \mid X = x) = 0$ if $x \neq m + n$.

Hence we get.

$$P(Y = m, Z = n) = P(Y = m, Z = n \mid X = m + n) P(X = m + n)$$
$$= \binom{m+n}{m} p^m (1 - p)^n \frac{\lambda^{m+n} e^{-\lambda}}{(m+n)!}$$
$$= \frac{m+n}{m} p^m (1 - p)^n \frac{\lambda^{m+n} e^{-\lambda} e^{-\lambda(1 - p)}}{(m+n)!}$$
$$= \frac{(\lambda p)^m e^{-\lambda} (\lambda(1 - p))^{m+n} e^{-\lambda(1 - p)}}{n!}$$
$$= P(Y = m) P(Z = n)$$