Problem 1. a.

\[A = (3 + i)(2 - i) + 2i \]
\[= 6 - 3i + 2i + 1 + 2i \]
\[= 7 + i \]
\[|A| = \sqrt{7^2 + 1^2} \]
\[= 5\sqrt{2} \]

b. \(e^{1+z} = 2 + i\)

Let \(z = a + ib\)

\[e^{(1+a)}e^{ib} = 2 + i \]
\[e^{(1+a)}(\cos b + i \sin b) = 2 + i \]

From the above we obtain the following equations:

\[e^{(1+a)} \cos b = 2 \]
\[e^{(1+a)} \sin b = 1 \]

Dividing the two equations we get:

\[b = \arctan \frac{1}{2} \]
\[b = 0.4636 \]

Solving for \(a\) we get:

\[e^{(1+a)} \cos b = 2 \]
\[e^{(1+a)} 0.8944 = 2 \]
\[e^{(1+a)} = 2.2361 \]
\[1 + a = 0.8047 \]
\[a = -0.1953 \]

Finally \(z = -0.1953 + 0.4636i\)
Problem 2. Using the Binomial theorem:
\[
\binom{7}{0} + \binom{7}{1} + ... + \binom{7}{6} + \binom{7}{7} = (1 + 1)^7 = 128
\]

Problem 3. Since the set consists of all bijections, \(g(1) \neq g(2), g(2) \neq g(3), g(1) \neq g(3) \)

The only possible combinations are:
\[
\begin{align*}
g(1) &< g(2) < g(3) \\
g(1) &< g(3) < g(2) \\
g(2) &< g(1) < g(3) \\
g(2) &< g(3) < g(1) \\
g(3) &< g(2) < g(1) \\
g(3) &< g(1) < g(2)
\end{align*}
\]

Of the six possible cases, we are interested in the case \(g(1) < g(2) < g(3) \). Hence the probability of this case is \(\frac{1}{6} \).

Problem 4. First approach. \(\Omega \) is the universal set and \(\phi \) is the empty set. Hence by definition
\[
\begin{align*}
(A \cap A^c) &= (B \cap B^c) = \phi \\
(A \cup A^c) &= (B \cup B^c) = \Omega
\end{align*}
\]

So we have:
\[
\begin{align*}
(A \cap B) \cap (A^c \cup B^c) &= (A \cap B \cap A^c) \cup (A \cap B \cap B^c) \\
&= (B \cap \phi) \cup (A \cap \phi) \\
&= \phi
\end{align*}
\]

And:
\[
\begin{align*}
(A \cap B) \cup (A^c \cup B^c) &= (A^c \cup B^c \cup A) \cap (A^c \cup B^c \cup B) \\
&= (B \cup \Omega) \cap (A \cup \Omega) \\
&= \Omega
\end{align*}
\]

Hence the sets \((A \cap B)\) and \(A^c \cup B^c\) are mutually exclusive and their union is the universal set. Hence by definition of a complement of a set we get:
\[
(A \cap B)^c = (A^c \cup B^c)
\]

Second approach. Assume \(\omega \) is not in \(A \cap B \). That means that \(\omega \) is not both in \(A \) and in \(B \). That is, \(\omega \) is either not in \(A \) or not in \(B \). In other words, \(\omega \) is either in \(A^c \) or in \(B^c \). That is, \(\omega \) is in \(A^c \cup B^c \). We can also argue in the reverse direction. That is, assume that \(\omega \) is in \(A^c \cup B^c \). Then \(\omega \) is either in \(A^c \) or \(B^c \), ..., and therefore \(\omega \) is not in \(A \cap B \).
Problem 5. Sentences in English are finite strings of symbols taken from a finite set A. This set consists of the letters, punctuation marks, and the space symbol.

Define S_1 as the set of all sentences which consist of a single element from set A. This set is finite and hence countable.

Similarly define S_m as the set of all sentences comprising m elements from A. This set is also finite (it has a cardinality of $|A|^m$ elements) and hence countable.

Now construct the set $S = \cup_{n=1}^{\infty} S_n$. This set is a countable collection of countable sets and hence it is countable.

Sentences defined using elements from set A may be grammatically incorrect (for example, our way of construction will allow "a,,de." to be a sentence). The set of grammatically correct sentences in English is a subset of S and hence is countable.

Problem 6.

$$\int_0^1 \frac{x}{1 + x} dx = \int_0^1 1 - \frac{1}{1 + x} dx$$

$$= [x]_0^1 - [\ln(x + 1)]_0^1$$

$$= 1 - \ln2$$

Problem 7.

$$\lim_{x \to 1} = 1$$

$$\lim_{x \to 1} = 2$$

$$\sup \{g(x) | x > 1\} = 1$$

$$\inf \{g(x) | x > 0\} = -\infty$$

Problem 8. This problem can be solved using the ‘stars and bars’ method

Since the third digit takes on values from 0 to 9, the sum of the first two digits needs to be in the range 0 to 9. By using the ‘stars and bars’ method we can find the number of digits that sum to a particular value.

Let S_n be the number combinations of digits that sum to n. Then $S_n = \binom{n+1}{1} = n + 1$

Total numbers = $\sum_{n=0}^{9} S_n = \sum_{n=0}^{9}(n + 1) = 55.$

Problem 9. Let

$$V = p + p^2 + p^3 + \cdots + p^N.$$

Note that $(1 - p)V = (p + p^2 + p^3 + \cdots + p^N) - (p^2 + p^3 + \cdots + p^N + p^{N+1}) = p - p^{N+1},$

so that

$$V = \frac{p - p^{N+1}}{1 - p}.$$

Now, let

$$S = p + 2p^2 + \cdots + Np^N.$$

3
Then

\[S = p + 2p^2 + \cdots + Np^N \]
\[pS = + 1p^2 + \cdots + (N - 1)p^N + Np^{N+1} \]

Subtracting the second equation from the first we get:

\[(1 - p)S = p + p^2 + \cdots + p^N - Np^{N+1} = V - NP^{N+1} \]
\[= \frac{p - (N + 1)p^{N+1} + Np^{N+2}}{1 - p}, \]

so that

\[S = \frac{p - (N + 1) \times p^{N+1} + N \times p^{N+2}}{(1 - p)^2}. \]

Another approach is to take the derivative with respect to \(p \) of \(1 + p + p^2 + \cdots + p^N \) and to multiply the result by \(p \). We let you try this method.