Problem 1. (20 points) State whether the following statements are True or False. Provide reasons for your answers.

(a) (5 points) X, Y, Z are Jointly Gaussian Random variables, then X must be Gaussian.

(b) (5 points) X is Poisson(1). P(X > 10) = 0.4

(c) (5 points) X and Y are i.i.d. random variables, then L[X|Y] = E[X]

(d) (5 points) X and Y are i.i.d. N(0, 1), then X + Y and X − Y are independent.

Answer 1. (a) True. We know that X, Y, Z are Jointly Gaussian Random if and only if all linear combinations of these random variables is Gaussian.

i.e. aX + bY + cZ is Gaussian ∀a, b, c

Now if we choose a = 1, b = 0, c = 0 then we see that X has to be Gaussian.

(b) False. From Chebyshev’s inequality we know that:

\[P(X \geq a) \leq P(|X| \geq a) \leq \frac{E[X^2]}{a^2} \]

We have \(E[X^2] = Var(X) + E[X]^2 = 1 + 1 = 2 \)

Hence,

\[P(X \geq 10) \leq \frac{E[X^2]}{10^2} \]
\[P(X \geq 10) \leq \frac{2}{100} \]
\[P(X \geq 10) \leq 0.02 \]

(c) True.
\[L[X|Y] = a(Y - E[Y]) + b \] Solving for \(a \) and \(b \) we get, \(b = E[X] \) and \(a = 0 \)

(d) True.

\(X \) and \(Y \) are individually Gaussian and independent, hence the pair \((X, Y)\) is Jointly Gaussian. Let \(V = X + Y \), \(U = X - Y \). It's easy to see that \(U \) and \(V \) are \(N(0, 2) \). Since \(U \) and \(V \) are linear combinations of Jointly Gaussian Random Variables the pair \((U, V)\) is Jointly Gaussian. Also \(\text{Cov}(UV) = E((X+Y)(X-Y)) = E[X^2] - E[Y^2] = 1 - 1 = 0 \).

Hence \(V \) and \(U \) are uncorrelated. Since they are Jointly Gaussian they are also independent.

Problem 2. (15 points) \(X \) and \(Y \) are i.i.d. \(\text{Unif}(\frac{-1}{2}, \frac{1}{2}) \) and \(Z = X^2 + Y \).

(a) (5 points) Find the conditional density \(f_{Z|X}(z|x) \).

\[f_{Z|X}(z|x) = \begin{cases} 1 & x^2 - \frac{1}{2} \leq z \leq x^2 + \frac{1}{2} \\ 0 & \text{otherwise} \end{cases} \]

(b) (5 points) Find the MMSE estimate of \(Z \) given \(X \).

(c) (5 points) Find the expected estimation error of the MMSE estimate in part (b).

Answer 2. (a) \(f_{Z|X=x}(z|x) = \text{Unif}(x^2 - Y, x^2 + Y) \).

\[f_{Z|X=x}(z|x) = \begin{cases} 1 & x^2 - \frac{1}{2} \leq z \leq x^2 + \frac{1}{2} \\ 0 & \text{otherwise} \end{cases} \]

b. The MMSE estimate of \(Z \) given \(X \) is \(E[Z|X] = X^2 \).

c. The Mean Square Error from (b) is: \(E[(Z - X^2)^2] = E[E[(Z - X^2)^2|X]] \).

\[E[(Z - X^2)^2|X] = E[(Z^2 - 2ZX^2 + X^4)|X] = E[Z^2|X] - 2X^2E[Z|X] + X^4 \]
\[= E[Z^2|X] - 2X^2E[Z|X] + X^4 \]
\[= X^4 + \frac{1}{12} - 2X^4 + X^4 \]
\[= \frac{1}{12} \]

Hence, \(E[(Z - X^2)^2] = E[\frac{1}{12}] = \frac{1}{12} \).

Problem 3. (15 points). \(X, Y \) and \(Z \) are jointly Gaussian random variables with mean zero and covariance matrix:

\[
\begin{bmatrix}
3 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 3
\end{bmatrix}
\]
Let \(U = X + Y + 2Z \) and \(V = 2X + Y + 3Z \)

(a) \(7\) points) Determine the joint density of \(U \) and \(V \)

(b) \(8\) points) Find \(E[U|V] \)

Answer 3a. We can write \([U \ V]^T = A[X \ Y \ Z]^T i.e.:\)

\[
\begin{bmatrix}
U \\
V
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 2 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}
\]

Then the covariance matrix of \(U \) and \(V \) (\(C_{UV}\)) = \(ACA^T = \)

\[
\begin{bmatrix}
34 & 50 \\
50 & 74
\end{bmatrix}
\]

\(|C_{UV}| = 16, E[U] = 0, E[V] = 0 \) and

\[C_{UV}^{-1} = \begin{bmatrix}
4.625 & -3.125 \\
-3.125 & 2.125
\end{bmatrix}\]

\(f_{UV}(u, v) = \frac{1}{8\pi} e^{-\frac{1}{2}[u \ v]C_{UV}^{-1}[u \ v]^T} \)

\[= \frac{1}{8\pi} e^{-\frac{1}{2}(4.625u^2 - 6.25uv + 2.125v^2)}\]

b. We know that \(E[U|V] = a + b(V - E[V]).\) Hence \(a = 0.\) and \(b = \frac{\text{Cov}(UV)}{\text{Var}(V)} = \frac{50}{74} = 0.6757\)

Problem 4. \(25\) points. Let \(X\) be Uniformly distributed random variable on \([0, 1]\). Then \(X\) divides \([0, 1]\) into subintervals \([0, X]\) and \((X, 1]\). By symmetry, the length of each subinterval has mean \(\frac{1}{2}\). Now pick one of these subintervals at random in the following way. Let \(Y\) be independent of \(X\) and uniformly distributed in \([0, 1]\) and pick the subinterval \([0, X]\) or \((X, 1]\) that \(Y\) falls in. Let \(L\) be the length of the subinterval so chosen. Formally,

\[
L = \begin{cases}
X & Y < X \\
1 - X & Y > X
\end{cases}
\]

Determine the mean of \(L\).

Answer 4. We have \(L = X \ 1(Y < X) + (1 - X) \ 1(Y > X)\)

Remember that \(E[L] = E[E[L|X]]\).

\(E[L|X] = X \ P(Y < X) + (1 - X) \ P(Y > X)\)

Now \(P(Y < X) = X\) and \(P(Y > X) = 1 - X\)

So \(E[L|X] = X^2 + (1 - X)^2 = 2X^2 - 2X + 1\)

\(E[L] = E[E[L|X]] = E[2X^2 - 2X + 1] = \frac{2}{3} - 1 + 1 = \frac{2}{3}\)
Problem 5. (25 points). Let X and Y be independent exponential random variables. X has a mean of \(\frac{1}{\lambda} \) and Y has a mean of \(\frac{1}{\mu} \). Z = X + Y. Determine \(E[Z^3] \).

Answer 5. \(\phi_X(\omega) = \frac{\lambda}{\lambda - j\omega} \)

\[
E[X^n] = \frac{1}{(i\pi)^n} \frac{d^n}{d\omega^n} \phi_X(\omega) |_{\omega=0} = \frac{n! \lambda}{(i\pi)(\lambda-j\omega)^{n+1}} |_{\omega=0} = \frac{n!}{\lambda^n}
\]

Similarly \(E[Y^n] = \frac{n!}{\mu^n} \)

\[
E[Z^3] = E[X^3 + 3X^2Y + 3Y^2X + Y^3]
\]

\[
\]

\[
= \frac{6}{\lambda^3} + \frac{6}{\mu \lambda^2} + \frac{6}{\mu^2 \lambda} + \frac{6}{\mu^3}
\]