I. SUMMARY

Here are the key ideas and results:

- **Theorem 1**: K is a covariance matrix iff it is positive semi-definite; then $K = R^2 = QAQ^T$ for some orthogonal matrix Q and $R = QA^{1/2}Q^T$.
- **Theorem 2**: If $X = N(\mu, K)$ with $|K| \neq 0$, then $f_X = (1)$

II. COVARIANCE MATRICES

Assume that K is a covariance matrix. That means that $K = E(XX^T)$ for some zero-mean random vector X. Here are some basic properties.

Theorem 1: Properties of Covariance Matrix

Assume that K is a covariance matrix. That matrix must have the following properties.

1. K is positive semi-definite. That is, $a^T K a \geq 0$ for all $a \in \mathbb{R}^n$.
2. K is positive definite if and only if $|K| \neq 0$.
3. The eigenvalues of K are real and nonnegative. Let $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ be the eigenvalues of K repeated according to their multiplicity. There is an orthonormal matrix Q such that $KQ = QA\Lambda$.
4. If K is positive definite, then $K^{-1} = QA^{-1}Q^T$.
5. There is a unique positive semi-definite matrix R such that $K = R^2$ and $R = QA^{1/2}Q^T$.
6. A positive semi-definite symmetric matrix K is a covariance matrix. It is the covariance matrix of RX where $X = N(0, I)$.

Proof:

1. Assume $K = E(XX^T)$ for some zero-mean random vector X. For $a \in \mathbb{R}^n$ one has $a^T K a = E(Y^2)$ where $Y = a^T X$.

 Hence $a^T \Sigma a \geq 0$.

2.-(4) Since K is positive semi-definite, (2)-(4) follow from Theorem 6 in [2].

5. The issue is uniqueness. The matrix R is such that $R = VA^{1/2}V^T$ where $K = VA\Lambda V^T$. Thus, V are the eigenvectors of K and $A^{1/2}$ is fixed.

6. is immediate.

The above theorem tells us about the shape of f_X, as stated in the next result, illustrated in Fig. 1.

Theorem 2: Assume that $X = N(0, K)$. If $|K| = 0$, the RVs X do not have a joint density. If $|K| \neq 0$, then

$$f_X(x) = \frac{1}{(2\pi)^{n/2}|K|^{1/2}} \exp\{-\frac{1}{2}x^T K^{-1}x\}. \tag{1}$$

Also, the level curves of f_X are ellipses whose axes are the eigenvectors of K and dimensions scaled by the square roots of the eigenvalues of K.
Fig. 1. The $N(0,K)$ probability density function.

Proof:

The expression for f_X follows from the representation $X = RY$ and the observation that if $x = Ry$, then $y = R^{-1}x$ and $y^T y = x^T R^{-2} x = xK^{-1}x$.

The level curves are sets of x such that $x^T K^{-1} x = y^T y = c$ where $x = Ry$. Thus, y belongs to a circle with radius \sqrt{c} and x belongs to an ellipse whose axes are the eigenvectors u_i of R. (See Section VIII in [2].)

References
