Contents

1 Locate Servers 2
2 Framework for Network Applications 2
3 Caches 4
 3.1 LRU .. 4
 3.2 Variable page sizes 7
 3.3 Modified LRU 7

Overview

The following issues appear in this lecture. (They are mentioned in the order of the layer hierarchy.)

- Applications
 - Framework; see section 2

- Services
 - Communication: Deliver files, byte streams
 - Content servers (which in turn need: load balancing, performance models, locating of servers, see section 1), and Caches, see section 3
 - Processing servers (postponed)

- Protocols

- Technology
1 Locate Servers

1. Cluster the addresses using the address structure. Ex.: N.H, i.e. Network.Host; see figure 1

2. Where to place the servers? Place the servers close to the busiest clusters. Ex.: 60% traffic in A, 30% in B, 10% in C, so you place a Server in A and one in B but probably none in C.

2 Framework for Network Applications

Object-Oriented Remote Procedure Call

Figure 2: Remote Procedure Call

You are in machine A and use machine B to execute some routine (see figure 2). What to do to avoid blocking B while processing in A?
A has a number of applications. Below this is a message service with an API. Under this is a Queue Manager (figure 3) which runs some priority queues. Between A and the rest of the world is the network.

Figure 3: RPC with Queue Manager

Issues in this context:

- **Reliability**, e.g.
 - send at least once (Ex. by acknowledgment scheme; figure 4)
 - send at most once
 - send exactly once (Ex. TCP, uses sequence numbers; figure 5)

- **Security**
 - Authentication: Message was sent from A to B; you then want to guarantee that the message comes from A
 - Encryption: Only the recipient can read the message. Ex.: Use public and secret key encryption.
3 Caches

How to update the cache (figure 6)? The objective is: Maximize “hit ratio”.

Model (figure 7): Store k pages. Server has N pages, $N \gg k$. A request arrives at the cache which cannot be served locally. The cache queries the server for the current page. The important question then is: “Update or not”.

3.1 LRU

A simple rule is LRU: Replace Least Recently Used page by page i.

We will now examine the performance of this rule. Assume that successive requests i are independent and arrive with probability p_i, $i = 1, \ldots, N$. Assume that all pages are of the same size.

If the probabilities p_1, \ldots, p_N were known, then we would place the k pages with k largest p_i’s in the cache. The probability that a request can be served locally is
Figure 7: Cache model

$p_1 + \ldots + p_k$.

Analysis

In steady-state

$$P(\text{cache contains } 1, \ldots, k) = \pi(1, \ldots, k) := \prod_{j=1}^{k} p_j$$

→ Pages that are requested often are likely to be in the cache.

Proof

$x = (1, \ldots, k)$ means that $1, \ldots, k$ are in the cache.

Let k be the LRU, then $k - 1$ is the next LRU, and 1 is the most recently used.

x_n is a Markov chain. If I know what is in the cache now, I can predict the following request.

$$x = (1, \ldots, k) \xrightarrow{i \notin k} (i, 1, \ldots, k - 1)$$
$$x = (i, 1, \ldots, k) \xrightarrow{i \notin k} \text{ without } i$$
$$(i, \ldots, i_k, \ldots) \xrightarrow{i \notin \{i_1, \ldots, i_k\}} (i, i_1, \ldots, i_k)$$

The complete Markov Chain solution is far too complicated. Instead we use a trick (which is generally a very useful one).

Let $P(x, y)$ be the probability that the state goes from x to y. E.g.

$$x = (1, \ldots, k)$$
$$y = (k + 3, 1, \ldots, k - 1)$$

with $P(x, y) = P_{k+3}$
Another example:

\[z = (3, 1, 2, 4, \ldots, k) \Rightarrow P(x, z) = P_3 \]
\[v = (2, 1, 4, 3, 5, \ldots, k) \Rightarrow P(x, v) = 0 \]

Figure 8: The probability that the state goes from \(y \) to \(x \)

See figure 8. Must show: \(\pi P = \pi \)

\[\sum_y \pi(y)P(y, x) = \pi(x) \quad \forall x \]

The key is like this:

Guess that \(x_n \) reversed in time is a Markov chain with transition probabilities \(p'(x, y) \).

\[x = (1, 2, \ldots, k) \xrightarrow{P_{k+3}} \text{Forward} \quad y = (k + 3, 1, 2, \ldots, k - 1) \xrightarrow{P_k} \text{Reverse} \]

How do we proof that? We show (time-reversal trick; see figure 9):

\[\pi(x)P(x, y) = \pi(y)P'(y, x) \quad \forall x, y \quad (1) \]

Figure 9: Equation (1) (time-reversal trick)
Assume that this is true. Then holds
\[\sum_x \pi(x)P(x, y) = \pi(y) \]
(2)

Instead of proving the balance equation (2) directly, we use the abovementioned trick. We will now prove (1) but will leave hands off (2).

\[x = (1, 2, \ldots, k) \]
\[y = (k + 3, 1, 2, \ldots, k1) \]
\[P(x, y) = P_{k+3} \]
\[P'(y, x) = P_k \]

And from (1):
\[\pi(x)P(x, y) \sim \pi(x)P'(y, x) \]
\[p(1) \ldots p(k)P_{k+3} = p(k + 3)p(1) \ldots p(k - 1)P_k \]

Q.e.d.

3.2 Variable page sizes

Model: Each \(a \) is requested with probability \(b \). All requests \(ahg \) are independent. Each page has the size \(c \). The cache can store \(ê \).

If you knew \(p_1, \ldots, p_N \): Which would be the best cache? The best cache would maximize \(\sum_{i \in I} P_i \) such that \(\sum_{i \in I} S_i \leq S \) over \(I \subset \{1, \ldots, N\} \).

This is the knapsack problem which is long-known and very difficult to solve.

Trying Intuition – one possible solution leads to Modified LRU.

3.3 Modified LRU

Replace least recently used page (figure 7) but only with a probability \(\frac{S_m}{S_i} \), with \(S_{min} := \min\{S_j, j = 1, \ldots, N\} \) as normalization constant.

\[\pi(1, \ldots, k) = A \cdot \frac{P_1}{S_1} \cdots \frac{P_k}{S_k} \]

A is another normalization constant.

MLRU is more efficient than LRU (fig. 10). Proof also by Time-Reversal trick.

Ex. for LRU: Figure 11.

Another algorithm: CLIMB; figure 12.
Figure 10: MLRU vs. LRU

Figure 11: Example LRU

Figure 12: Example CLIMB