Stochastic Differential Equations for Power Law Behaviors

Bo Jiang*, Roger Brockett+, Weibo Gong*, Don Towsley*

*University of Massachusetts, Amherst
+Harvard University
Exponential Growth with Exponential Restart

\[dX_t = \mu X_t dt + (x_0 - X_{t^-}) dN_t \]

where \(X_0 = x_0 \)

Fokker-Planck Equation:

\[\frac{\partial f_X}{\partial t} = -\frac{\partial}{\partial x} (\mu x f_X) - \lambda f_X \]

Steady state CCDF – Pareto

\[F_X(x) = \left(\frac{x}{x_0} \right)^{-\frac{\lambda}{\mu}}, \quad x \geq x_0 \]
Sample Path and Density (Pareto)

- Connection to Tan’s work
 - example: exponential packet lengths

\[\text{sample path of } dX_t = \mu X_t dt + (x_0 - X_t) dN_t \]

\(\mu = 5 \)
\(\lambda = 3 \)
\(x_0 = 7 \)

\(\text{latency} \)

\(\text{pkt length} \)
Sample Path and Density (Pareto)

- Social network degree distribution
 - exponentially distributed user ages (social network ages)
Sample Path and Density (Pareto)

- Connection to Tan’s work
- Social network degree distribution

Sample path of $dX_t = \mu X_t dt + (X_0 - X_t) dN_t$

- $\mu = 5$
- $\lambda = 3$
- $x_0 = 1$

Pareto distribution density
Sub-exponential Growth with Exponential Restart

Sub-exponential growth, i.e. $\delta \in [0, 1)$

\[dX_t = \mu X^\delta_t dt + (x_0 - X_{t^-})dN_t \]

Fokker-Planck Equation is

\[\frac{\partial f_X}{\partial t} = -\frac{\partial}{\partial x} (\mu x^\delta f_X) - \lambda f_X \]

Steady state CCDF – Weibull (headless)

\[\bar{F}_X(x) = \exp \left\{ -\frac{\lambda}{\alpha(1-\delta)} (x^{1-\delta} - x_0^{1-\delta}) \right\}, \quad x \geq x_0 \]
Sample Path and Density (Weibull)

Sub-linear Preferential Attachment

sample path of $dX_t = \mu X_t^{\delta} dt + (X_0 - X_t) dN_t$

$\mu = 5$
$\lambda = 3$
$X_0 = 1$
$\delta = 0.5$

density of Weibull distribution
Geometric Brownian Motion with Exponential Restart

Geometric Brownian motion with exponential restart

\[dX_t = \mu X_t dt + \sigma X_t dW_t + (x_0 - X_{t-}) dN_t \]

where \(X_0 = x_0 \)

Density \(f_X(x, t) \) satisfies Fokker-Planck Equation

\[\frac{\partial f_X}{\partial t} = -\frac{\partial}{\partial x}(\mu x f_X) + \frac{1}{2} \frac{\partial^2}{\partial x^2}(\sigma^2 x^2 f_X) - \lambda f_X \]
Steady State Density – Double Pareto

Steady state density – Double Pareto

\[f_X(x) = \begin{cases}
 x_0^{-1} \frac{\alpha \beta}{\alpha + \beta} \left(\frac{x}{x_0} \right)^{\beta - 1}, & x \in (0, x_0] \\
 x_0^{-1} \frac{\alpha \beta}{\alpha + \beta} \left(\frac{x}{x_0} \right)^{-\alpha - 1}, & x \in [x_0, \infty)
\end{cases} \]

where \(\alpha, -\beta (\alpha, \beta > 0) \) are roots of quadratic equation

\[
\frac{1}{2} \sigma^2 \gamma^2 + \left(\mu - \frac{1}{2} \sigma^2 \right) \gamma - \lambda = 0
\]
Sample Path and Density (Double Pareto)

MySpace degree distribution

![Graph showing the distribution of MySpace degree distribution with a log-log scale on the axes. The x-axis represents the number of friends, ranging from 1 to 10^6, and the y-axis represents the complementary cumulative distribution function (CCDF), ranging from 10^-5 to 1. The data points form a power-law distribution.]
Comparison of Three Densities

densities of double Pareto, Pareto and Weibull distributions

\[f(x) \]

\[x \]

\[10^{-9} \]

\[10^{-8} \]

\[10^{-7} \]

\[10^{-6} \]

\[10^{-5} \]

\[10^{-4} \]

\[10^{-3} \]

\[10^{-2} \]

\[10^{-1} \]

\[10^{0} \]

\[10^{1} \]

\[10^{2} \]

\[10^{3} \]

\[10^{4} \]

\[10^{5} \]

\[10^{6} \]

\[10^{7} \]

\[10^{8} \]

\[10^{9} \]
Conclusions

- SDEs unified way to generate power law and non-power-law distributions
- Insight about when power laws occur
- SDEs flexible and moments of distributions easy to obtain
- Connections to
 - Tan’s work
 - Social network degree distribution