Last Time

- We assumed that the link carries frames
 - FH Payload EDC
 - n bits k bits

- Error detecting code part contains bits that add redundancy

- Natural Questions:
 - How do physical media transport the frames?
 - Why are some links faster than others?
 - What limits the amount of information we can send on a link?
Today

- Link Functions and Components
- The role of Noise and Bandwidth in determining link rate
- Encoding: Converting bits to analog signals
 - Physical Layer Function
- Framing: Establishing the conventions that denote boundaries
 - Data Link Layer Function
Link Functions

- Functions
 1. Construct Frame with Error Detection Code
 2. Encode bit sequence into analog signal
 3. Transmit bit sequence on a physical medium (Modulation)
 4. Receive analog signal
 5. Convert Analog Signal to Bit Sequence
 6. Recover errors through error correction and/or ARQ

Adaptor: convert bits into physical signal and physical signal back into bits
Link Components

- Error Coding (e.g., parity)
- Channel Coding (e.g., NRZI)
- Modulation (e.g., OOK)
- Error Decoding
- Channel Decoding
- Demodulation

Data Flow:
- 0100011 → 01000111 → 1001010101 → Medium
Link Properties

- **Function**
 - Duplex/Half Duplex
 - One stream, multiple streams

- **Characteristics**
 - Bit Error Rate
 - Data Rate (this sometimes mistakenly called bandwidth!)
 - Degradation with distance

- **Cables and Fibers**
 - CAT 5 twisted pair: 10-100Mbps, 100m
 - Coax: 10-100Mbps, 200-500m
 - Multimode Fiber: 100Mbps, 2km
 - Single Mode Fiber: 100-2400Mbps, 40km

- **Wireless**
Example: Optical Links

- Source
- Coupler
- Splice
- Detector
- Transmitter
- Receiver

Total reflection

Cladding
Different modes of propagation
Core

Step index

One of multiple modes of propagation

GRIN

Unique mode of propagation

SMF

Diameter $\leq 8 \mu m$
Link rate and Distance

Links become slower with distance because of attenuation of the signal. Amplifiers and repeaters can help.
Noise

- A signal \(s(t) \) sent over a link is generally
 - Distorted by the physical nature of the medium
 - This distortion may be known and reversible at the receiver
 - Affected by random physical effects
 - Shot noise
 - Fading
 - Multipath Effects
 - Also interference from other links
 - Wireless
 - Crosstalk

- Dealing with noise is what communications engineers do
Noise limits the link rate

- Suppose there were no noise
 - E.g. Send $s(t)$ always receive $s(t+?)$
 - Take a message of N bits say $b_1b_2\ldots b_N$, and send a pulse of amplitude of size $0.b_1b_2\ldots b_N$
 - Can send at an arbitrarily high rate
 - This is true even if the link distorts the signal but in a known way

- In practice the signal always gets distorted in an unpredictable (random) way
 - Receiver tries to estimate the effects but this lowers the effective rate

- One way to mitigate noise is to jack up the power of the signal
- Signal to Noise ratio (SNR) measures the extent of the distortion effects
Bandwidth affects the data rate

- There is usually a fixed range of frequencies at which the analog wave can traverse a link.
- The physical characteristics of the link might govern this.
- Example:
 - Voice Grade Telephone line 300Hz – 3300Hz
- The bandwidth is 3000Hz
- For the same SNR, a higher bandwidth gives a higher rate.
Sampling Result (Nyquist)

- Suppose a signal $s(t)$ has a bandwidth B.
- Sampling Result: Suppose we sample it (accurately) every T seconds.

- If $T = 1/2B$ then it is possible to reconstruct the $s(t)$ correctly
 - Only one signal with bandwidth B has these sample points
 - There are multiple signals with these sample points for signals with bandwidth greater than B
- Increasing the bandwidth results in a richer signal space
- No noise allowed in the sampling result
Sampling Continued

- But now assume noise that is distributed uniformly over the frequency band.
- Then the richer signal space will enable more information to be transmitted in the same amount of time.
- Higher bandwidth \rightarrow Higher rate (for the same SNR)
The Frequency Spectrum is crowded...
Fundamental Result

- The affect of noise on the data is modeled probabilistically.
- It turns out that there is a maximum possible reliable rate for most channels called the capacity C:
 - There is a scheme to transmit at C with almost no errors
 - Finding this scheme is tricky but it exists
- For a commonly observed kind of noise called Additive White Gaussian Noise (AWGN) the capacity is given by:
 - $C = W \log_2(1 + S/N)$ bits/sec (Shannon)
 - Example: Voice grade line: $S/N = 1000$, $W=3000$, $C=30$Kbps
 - Technology has improved S/N and W to yield higher speeds such as 56Kb/s
Encoding

- Goal: send bits from one node to another node on the same physical media
 - This service is provided by the physical layer
- Problem: specify a robust and efficient encoding scheme to achieve this goal
Assumptions

- We use two discrete signals, high and low, to encode 0 and 1.
- The transmission is synchronous, i.e., there is a clock used to sample the signal.
 - In general, the duration of one bit is equal to one or two clock ticks.
- If the amplitude and duration of the signals is large enough, the receiver can do a reasonable job of looking at the distorted signal and estimating what was sent.
Non-Return to Zero (NRZ)

- 1 \rightarrow high signal; 0 \rightarrow low signal
- Disadvantages: when there is a long sequence of 1’s or 0’s
 - Sensitive to clock skew, i.e., difficult to do clock recovery
 - Difficult to interpret 0’s and 1’s (baseline wander)
Non-Return to Zero Inverted (NRZI)

- 1 → make transition; 0 → stay at the same level
- Solve previous problems for long sequences of 1’s, but not for 0’s
Manchester

- 1 \rightarrow high-to-low transition; 0 \rightarrow low-to-high transition
- Addresses clock recovery and baseline wander problems
- Disadvantage: needs a clock that is twice as fast as the transmission rate
 - Efficiency of 50%
4-bit/ 5-bit (100Mb/ s Ethernet)

- Goal: address inefficiency of Manchester encoding, while avoiding long periods of low signals
- Solution:
 - Use 5 bits to encode every sequence of four bits such that no 5 bit code has more than one leading 0 and two trailing 0’s
 - Use NRZI to encode the 5 bit codes
 - Efficiency is 80%

<table>
<thead>
<tr>
<th>4-bit</th>
<th>5-bit</th>
<th>4-bit</th>
<th>5-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>11110</td>
<td>1000</td>
<td>10010</td>
</tr>
<tr>
<td>0001</td>
<td>01001</td>
<td>1001</td>
<td>10011</td>
</tr>
<tr>
<td>0010</td>
<td>10100</td>
<td>1010</td>
<td>10110</td>
</tr>
<tr>
<td>0011</td>
<td>10101</td>
<td>1011</td>
<td>10111</td>
</tr>
<tr>
<td>0100</td>
<td>01010</td>
<td>1100</td>
<td>11010</td>
</tr>
<tr>
<td>0101</td>
<td>01011</td>
<td>1101</td>
<td>11011</td>
</tr>
<tr>
<td>0110</td>
<td>01110</td>
<td>1110</td>
<td>11100</td>
</tr>
<tr>
<td>0111</td>
<td>01111</td>
<td>1111</td>
<td>11101</td>
</tr>
</tbody>
</table>
Modulation

- The function of transmitting the encoded signal over a link, often by combining it with another (carrier signal)
 - E.g. Frequency Modulation (FM)
 - Combine the signal with a carrier signal in such a way that the instantaneous frequency of the received signal contains the information of the carrier
 - E.g. Frequency Hopping (OFDM)
 - Signal transmitted over multiple frequencies
 - Sequence of frequencies is pseudo random
Framing

- **Goal:** send a block of bits (frames) between nodes connected on the same physical media
 - This service is provided by the **data link** layer
- **Use a special byte (bit sequence) to mark the beginning (and the end) of the frame**
- **Problem:** what happens if this sequence appears in the data payload?
Byte-Oriented Protocols: Sentinel Approach

- STX – start of text
- ETX – end of text
- Problem: what if ETX appears in the data portion of the frame?
- Solution
 - If ETX appears in the data, introduce a special character DLE (Data Link Escape) before it
 - If DLE appears in the text, introduce another DLE character before it

- Protocol examples
 - BISYNC, PPP, DDCMP
Byte-Oriented Protocols: Byte Counting Approach

- **Sender**: insert the length of the data (in bytes) at the beginning of the frame, i.e., in the frame header.

- **Receiver**: extract this length and decrement it every time a byte is read. When this counter becomes zero, we are done.
Bit-Oriented Protocols

- Both start and end sequence can be the same
 - E.g., 01111110 in HDLC (High-level Data Link Protocol)
- Sender: inserts a 0 after five consecutive 1s
- Receiver: when it sees five 1s makes decision on the next two bits
 - if next bit 0 (this is a stuffed bit), remove it
 - if next bit 1, look at the next bit
 - If 0 this is end-of-frame (receiver has seen 01111110)
 - If 1 this is an error, discard the frame (receiver has seen 01111111)
Clock-Based Framing (SONET)

- SONET (Synchronous Optical NETwork)
- Developed to transmit data over optical links
 - Example: SONET ST-1: 51.84 Mbps
 - Many streams on one link
- SONET maintains clock synchronization across several adjacent links to form a path
 - This makes the format and scheme very complicated
SONET Multiplexing

- STS-3c has the payloads of three STS-1’s byte-wise interleaved.
- STS-3 is a SONET link w/o multiplexing
- For STS-N, frame size is always 125 microsec
 - STS-1 frame is 810 bytes
 - STS-3 frame is 810x3 = 2430 bytes
First two bytes of each frame contain a special bit pattern that allows to determine where the frame starts.

- No bit-stuffing is used.
- Receiver looks for the special bit pattern every 810 bytes.
 - Size of frame = 9x90 = 810 bytes.
Clock-Based Framing (SONET)

Details:

- Overhead bytes are encoded using NRZ
- To avoid long sequences of 0’s or 1’s the payload is XOR-ed with a special 127-bit pattern with many transitions from 1 to 0
Summary

- Links are subject to random noise
- For a given probabilistic model of the noise it may be possible to compute its capacity
 - Generally depends on SNR and Bandwidth
- Encoding – specifies how bits are represented on in the analog signal
 - Challenge – achieve:
 - Efficiency – ideally, bit rate = clock rate
 - Robust – avoid de-synchronization between sender and receiver when there is a large sequence of 1’s or 0’s
- Framing – specify how blocks of data are transmitted
 - Challenge
 - Decide when a frame starts/ends
 - Differentiate between the true frame delimiters and delimiters appearing in the payload data